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Abstract

Analysis of genomic segments shared identical-by-descent (IBD) between individuals is fundamental to many genetic
applications, from demographic inference to estimating the heritability of diseases, but IBD detection accuracy in
nonsimulated data is largely unknown. In principle, it can be evaluated using known pedigrees, as IBD segments are
by definition inherited without recombination down a family tree. We extracted 25,432 genotyped European individuals
containing 2,952 father–mother–child trios from the 23andMe, Inc. data set. We then used GERMLINE, a widely used IBD
detection method, to detect IBD segments within this cohort. Exploiting known familial relationships, we identified a
false-positive rate over 67% for 2–4 centiMorgan (cM) segments, in sharp contrast with accuracies reported in simulated
data at these sizes. Nearly all false positives arose from the allowance of haplotype switch errors when detecting IBD, a
necessity for retrieving long (>6 cM) segments in the presence of imperfect phasing. We introduce HaploScore, a novel,
computationally efficient metric that scores IBD segments proportional to the number of switch errors they contain.
Applying HaploScore filtering to the IBD data at a precision of 0.8 produced a 13-fold increase in recall when compared
with length-based filtering. We replicate the false IBD findings and demonstrate the generalizability of HaploScore to
alternative data sources using an independent cohort of 555 European individuals from the 1000 Genomes project.
HaploScore can improve the accuracy of segments reported by any IBD detection method, provided that estimates of the
genotyping error rate and switch error rate are available.
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New Approaches
Existing identical-by-descent (IBD) detection methods have
largely been benchmarked using simulated data. In this study,
we use data from 2,952 father–mother–child trios to analyze
IBD detection method accuracy on nonsimulated data. We
discover a surprisingly high rate of false positives in short
segments identified by GERMLINE, a popular IBD detection
method that scales well to large data sets. The false positives
arise due to an algorithmic heuristic that ignores haplotype
phase information. This heuristic is necessary to detect long
IBD segments in the presence of switch errors. To overcome
this limitation, we introduce HaploScore, a metric that
quantifies the likelihood that a reported IBD segment
actually matches on individual haplotypes. HaploScore effec-
tively discriminates between true- and false-reported IBD
segments and is robust to substantial parameter variation.
HaploScore can be applied to IBD segments detected
by any method to improve accuracy, and a Python imple-
mentation is freely available (https://github.com/23andMe/
ibd, last accessed May 8, 2014).

Introduction
IBD segments are regions of DNA between two individuals
that were inherited from a recent shared common ancestor.

IBD segments can be detected on high-density genetic data
such as that produced by genome-wide genotyping arrays or
whole-genome sequencing.

Detecting the presence and distribution of IBD segments
between individuals is fundamental to many genetic applica-
tions (Browning SR and Browning BL 2012). Long-range phas-
ing (Kong et al. 2008) uses IBD segments to resolve haplotype
phasing inaccuracies. IBD segments have been used to identify
disease genes (Krawitz et al. 2010; Gusev et al. 2011; Jonsson
et al. 2012) and estimate the heritability of traits and common
diseases (Visscher et al. 2006; Zuk et al. 2012). The lengths and
distribution of IBD segments within and across populations
have been used to infer demographic history (Gusev et al.
2012; Palamara et al. 2012; Ralph and Coop 2013) and identify
regions under natural selection (Albrechtsen et al. 2009; Han
and Abney 2013).

All methods for IBD detection ultimately try to detect a
similarity between haplotypes that is statistically unlikely to
occur in the absence of IBD sharing. Hidden Markov models
have been used extensively for probabilistic IBD segment de-
tection (Purcell et al. 2007; Albrechtsen et al. 2009; Browning
SR and Browning BL 2010; Han and Abney 2011; Palin et al.
2011; Brown et al. 2012; Han and Abney 2013). However,
these methods scale quadratically with input sample sizes
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and are thus not suitable for IBD detection in population-
scale data sets (reviewed in Browning SR and Browning BL
2012). Nonprobabilistic IBD detection methods use a “hash-
and-extend” methodology that is conceptually similar to
BLAST (Altschul et al. 1990): Identical or nearly identical
short haplotype match “seeds” are detected efficiently, and
the seeds are extended to adjacent sites subject to heuristic
constraints. These nonprobabilistic methods have the advan-
tage that they are able to scale to much larger data sets than
probabilistic methods. Implementations include GERMLINE
(Gusev et al. 2009, 2012), fastIBD (Browning BL and Browning
SR 2011) and RefinedIBD (Browning BL and Browning SR
2013). GERMLINE and RefinedIBD use short windows of
sites as seeds, whereas fastIBD uses small segments of the
inferred haplotype graph as seeds.

These three methods differ in the way that detected can-
didate segments are chosen to be kept as true IBD segments:
FastIBD uses haplotype frequency, RefinedIBD uses a combi-
nation of segment genetic length and a likelihood ratio test,
and GERMLINE uses segment length. The probabilistic refine-
ment methods of fastIBD and RefinedIBD require a haplotype
graph to be generated. Consequently, both fastIBD and
RefinedIBD perform haplotype phasing in addition to IBD
detection. Haplotype phasing has superlinear computational
complexity (Williams et al. 2012). Current computer memory
capacity constraints limit the number of individuals who can
be phased together to tens of thousands of individuals. This
makes the detection of all pairwise IBD segments in a cohort
of over 100,000 individuals computationally infeasible using
these methods because computing all pairwise IBD requires
splitting the cohort into multiple smaller batches, all of which
must be compared with each other, each time being phased
anew. Because GERMLINE uses segment length to refine IBD
segments, it does not perform genotype phasing.
Consequently, detection of all pairwise IBD segments can
be performed on large cohorts by phasing each individual
once and then using GERMLINE to detect IBD.

IBD detection accuracy is typically assessed on simulated
data, as true IBD segments can then be known precisely
(Browning BL and Browning SR 2007, 2013; Albrechtsen
et al. 2009; Gusev et al. 2009). However, accurate simulation
of population demography is difficult (Browning SR and
Browning BL 2012), and simulation parameters directly
affect the estimated precision and recall of IBD detection
algorithms. With a large number of father–mother–child
trios, IBD detection accuracy can be estimated on nonsimu-
lated data by examining concordance between reported IBD
segments in the child and his or her parents.

In this work, we analyze the accuracy of IBD segments
reported by GERMLINE because its decoupling of phasing
and IBD detection make it feasible for IBD detection on pop-
ulation-scale data sets. We use a large cohort of trios to assess
IBD segment accuracy on nonsimulated data. We perform a
detailed examination of discrepant segments and present a
method that substantially improves accuracy, while remain-
ing computationally tractable for population-scale data sets.
Finally, we replicate the findings using an independent cohort
of individuals from the 1000 Genomes project.

Results

Nonsimulated Data Show Substantial Inaccuracy in
Short Reported IBD Segments

To analyze IBD detection accuracy on nonsimulated data, we
examined IBD segments detected in a cohort of 25,432 indi-
viduals of European ancestry that includes 2,952 distinct
father–mother–child trios (the “23andMe cohort,” see
Materials and Methods). By focusing specifically on segments
reported between a trio child and an individual who is not a
parent of that child (henceforth called “child-other” seg-
ments), IBD accuracy can be quantified: By the definition of
IBD, if a child-other segment is true, at least one of the child’s
parents must also share a segment IBD with the individual
(henceforth called “parent-other” segments) that encom-
passes the child-other segment.

GERMLINE reported a total of 18,125,797 child-other seg-
ments in the 23andMe cohort on chromosome 21. After fil-
tering artifactual IBD segments reported in regions of low site
density, 13,307,562 child-other segments were retained for
analysis. Only 14% of these child-other segments were en-
compassed by a parent-other segment (fig. 1A, supplemen-
tary fig. S1A, Supplementary Material online). Another 25% of
child-other segments have a partial parent-other segment in
which at least one segment end is truncated (fig. 1A, supple-
mentary fig. S1B, Supplementary Material online). Segment
ends imply the presence of opposite homozygote genotypes
between the individuals. Opposite homozygote sites that ter-
minate a parent-other segment exclude the possibility of
child-other IBD at those sites. To determine whether trun-
cated segment ends represented false child-other IBD or gen-
otyping error in parent-other regions, Illumina GenCall scores
were examined at the opposite homozygote sites truncating
128,656 randomly selected partial parent-other segments.
Considering GenCall scores of �0.7 as confident genotype
calls (Fan et al. 2003), over 95% of opposite homozygote
sites analyzed (122,364/128,656) have confident genotype
calls in both the parent and other individual. This result in-
dicates that the majority of disagreements between child-
other and parent-other segments represent false-positive
IBD in the child rather than false-negative IBD in the parent
(fig. 1B).

The remaining 61% of child-other segments have no cor-
responding parent-other segment (fig. 1A, supplementary fig.
S1C, Supplementary Material online). All segments in this
subset were analyzed to determine whether they represented
false-positive child-other segments or false-negative parent-
other segments by examining the number of parent-other
opposite homozygote sites in the region. Nearly 98% of
these child-other segments have at least one opposite homo-
zygote site in the parent (fig. 1C). Given a 95% accuracy rate
for parent-other opposite homozygote sites (fig. 1B), the
probability that a region containing N opposite homozygote
sites is actually a false-negative parent-other IBD segment was
calculated as ð1� 0:95ÞN. The expected fraction of false-
negative parent-other segments in this subset is 0.0242, and
thus, the fraction of false-positive child-other segments in this
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subset is 0.9758. This likely represents a conservative (i.e., low)
estimate of false-positive child-other segments for two rea-
sons: The actual genotyping accuracy is much higher than the
stringent confident genotype call threshold indicates, and
segments with no opposite homozygote sites can still be
not shared IBD.

The unexpectedly small number of child-other segments
that are fully spanned by a corresponding parent-other seg-
ment motivated an analysis of the relationship between seg-
ment length and segment overlap. Segment overlap between
parent and child was calculated based on the fraction of sites
in the child-other segment (supplementary fig. S1,
Supplementary Material online). Segments were segregated
by genetic and physical lengths, and the average segment
overlap of all segments in each bin was calculated (fig. 2A).
Genetic length is a more reliable indicator of average segment
overlap than physical length, and segments longer than 6 cM
generally show a high degree of overlap. However, the average
overlap drops rapidly as segment length is reduced (fig. 2A).

IBD accuracy was estimated by considering child-other
segments with substantial parent-other segment overlap as
true IBD. Because precise determination of IBD endpoints
from genotype data is difficult (Browning BL and Browning
SR 2013), a threshold of 80% segment overlap was used to
classify a segment as true IBD. Using this criterion, more
than 67% of all reported segments shorter than 4 cM are

false-positive child segments (fig. 2B). Figure 2C–F show the
IBD segment overlap distributions segregated by genetic
length. Most 2–3 cM segments are erroneous (fig. 2C), and
only segments longer than 5 cM have a negligible number of
false positives (fig. 2F). Indeed, when filtering solely by genetic
length, all segments shorter than 5 cM must be discarded to
achieve a precision value of 0.8 (supplementary fig. S2,
Supplementary Material online). However, because there
are many more short segments (supplementary fig. S3,
Supplementary Material online), eliminating all segments
shorter than 5 cM eliminates 99% of all true IBD segments,
a dramatic loss in recall (supplementary fig. S2,
Supplementary Material online). In the next section, we in-
vestigate the properties of true IBD segments of all lengths
and contrast them with erroneous segments.

Overly Permissive Diplotype Matching Causes
Reported Segment Inaccuracy

IBD segments are shared between two individual haplotypes.
Thus, if the phase of each individual genotype was known, IBD
detection algorithms could in principle analyze each individ-
ual haplotype independently. However, for individuals with-
out a genotyped pedigree, genotypes have to be phased
statistically, where switch errors occur at an appreciable fre-
quency (supplementary fig. S4, Supplementary Material
online). Examination of only haplotypes in the presence of
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FIG. 1. Analysis of child-other segments in parents. (A) The majority of child-other segments are not detected in either parent. Parent segment overlap
is calculated as the percentage of sites in the child-other segment that are included in the parent-other segment. (B) Truncation points for parent-other
segments are nearly always confidently genotyped opposite homozygote sites, consistent with false-positive IBD in the child. The opposite homozygote
site causing truncation of the parent-other segment was examined in a randomly selected subset of all 3,371,616 segments with partial parent overlap.
(C) Child-other segments with no corresponding parent-other segments contain many parent-other opposite homozygotes in the region, also
consistent with false-positive IBD in the child. For each of these child-other segments, the number of opposite homozygote sites present between
the parent and the other individual at that segment location is calculated separately for each parent, and the smaller is chosen as the number of
opposite homozygotes in the region.
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switch errors is known to reduce power to detect IBD, espe-
cially for long segments (Browning BL and Browning SR 2013),
because they are likely to harbor more switch errors than
short segments. Thus, GERMLINE (and many other IBD de-
tection methods) matches IBD segments between individual
diplotypes, trying to allow for a moderate number of switches
between individuals’ haplotypes. In practice, this is achieved
by allowing haplotype match seeds to extend until an oppo-
site homozygous site is met. There are two potential issues
with this approach that could lead to inconsistent segment
reporting between parent and child and are explored further
below.

Detection of child-other segments with a truncated or
absent corresponding parent-other segment could arise
from the haplotype matching between the child and the
other individual, but a switch error in the parent causing
the corresponding haplotype to not match between the
parent and the other individual. To investigate this potential
error source, all 2,952 trios were trio-phased using the laws of
Mendelian inheritance, and then IBD detection was per-
formed as before. Trio-phasing ensures that children and par-
ents are phased essentially perfectly (i.e., up to recombination
events), eliminating haplotype discrepancies between parent
and child as a source of segment discrepancies. The number
and accuracy of child-other segments using trio-phased data
is nearly identical to that of BEAGLE-phased data, showing
that parent–child haplotype discrepancies contribute a neg-
ligible amount toward discrepant segments (supplementary
fig. S5, Supplementary Material online).

Alternatively, child-other segments with no corresponding
parent-other segment could be false reported IBD between
the child and the other individual due to overly permissive
diplotype matching. To examine this possibility, each full
100-site window in all 13,307,562 child-other segments was
analyzed (63,542,380 total windows) to see whether the
window satisfied the diplotype match criterion and the
haplotype match criterion between the child and the other
individual and between the parent and the other individual.
The analysis was segregated by windows contained within
corresponding parent-other segments (likely true IBD) and
windows that are not contained within corresponding
parent-other segments (false IBD). The diplotype match cri-
terion is satisfied in the child in 97.6% of windows contained
within parent-other segments (table 1) and in 97.5% of win-
dows not contained within parent-other segments (table 2).
Approximately 67.7% of windows contained within both
child-other and parent-other segments satisfy the haplotype
match criterion for IBD in the child (table 1), consistent with
true IBD given the window size and empirical switch error
rate (supplementary fig. S4, Supplementary Material online).
In contrast, only 44.2% of windows not contained within
a parent-other segment satisfy the haplotype match crite-
rion for IBD in the child (table 2), a substantial reduction
(binomial P < 10�300).

The poor precision in short segments is thus due to the
allowance of diplotype-only matches within the IBD detec-
tion algorithm. However, allowing diplotype-only matches is
necessary for detection of long segments due to imperfect
haplotype phasing (Gusev et al. 2012). The substantial reduc-
tion in windows matching haplotypes in regions of false IBD
suggests a haplotype-based metric that is robust to switch
errors could improve precision of reported IBD without the
loss of recall incurred by haplotype-only IBD detection
mechanisms.

A Haplotype-Based Metric to Identify True IBD
Segments

IBD is fundamentally a property of haplotypes, not diplotypes.
Consequently, true IBD should appear consistent with

A B

C D

E F

FIG. 2. Accuracy of child-other IBD segments reported by GERMLINE.
(A) Heat map of the mean fraction of reported child-other IBD seg-
ments contained in a corresponding parent-other segment, binned by
two measures of segment length. For each child-other segment, the frac-
tion of the segment also reported as an IBD segment between the
parent and the other individual is calculated. Shown in each bin is
the mean of the segment fractions calculated for all segments in the
bin. (B) The fraction of child-other segments that are true IBD as a
function of segment length. True IBD segments are defined as having
at least 80% of their sites encompassed by a parent-other segment.
(C–F) Histograms of child-other segment counts binned by segment
overlap for segments of 2–3 cM (C), 3–4 cM (D), 4–5 cM (E), and
5–6 cM (F). Note the scale changes on the y axes: Though the fraction
of true segments of length less than 3 cM is smallest, this range contains
roughly 10-fold more true segments than all other length ranges
combined.
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haplotype matches, modulo expected genotyping and switch
errors. We introduce HaploScore as a measure of haplotype
IBD likelihood: Given a genotyping error rate per site " and a
switch error rate per site �, the HaploScore for a candidate
IBD segment S is

HaploScoreðSÞ ¼
1

j S j

ng

�
+

ns

�

� �
,

where j S j is the number of genotyped sites in S, and ng and
ns are the number of genotyping and switch errors, respec-
tively, that together minimize the score while reconciling the
segment as matching across a single haplotype in both indi-
viduals (fig. 3). Conceptually, HaploScore is a measure of the
ratio of observed and expected genotyping and switch errors.
In segments falsely reported as IBD, a larger-than-expected
number of genotyping and switch errors may be required to
reconcile the segments as matching across individual haplo-
types, and their HaploScores will be large.

Genotyping and switch error rates per site were estimated
from the data to be "= 0.0075 and � = 0.003 (Materials and
Methods). Using those parameters, HaploScore was calcu-
lated on all segments shorter than 6 cM. To investigate
whether HaploScore behaves differently between true and
false IBD, we plotted a heat map of IBD segment overlap as
a function of segment genetic length and HaploScore values.
HaploScore effectively discriminates true and false IBD seg-
ments at all lengths (fig. 4A). Indeed, the relationship between
HaploScore and mean segment overlap is nearly monotonic,
drawing a clear boundary between segments with at least 80%
overlap and others at all genetic lengths.

In addition, we assessed the power of HaploScore as a
binary classifier to decide if an IBD segment is true. We
varied a HaploScore threshold from 0 to 22 (the maximum

observed HaploScore value on chromosome 21) and classified
segments with a HaploScore value smaller than the threshold
as true IBD. We then computed the true-positive and false-
positive rates at each HaploScore threshold. HaploScore
performed well as a binary classifier at all genetic lengths,
achieving an area under the receiver operating characteristic
curve (AUC) greater than 0.8 for segments longer than 3 cM
(fig. 4B). At all levels of precision, power increased as segment
length increased, owing at least in part to the general positive
correlation between segment length and number of sites in
the segment. Importantly, and in sharp contrast with length-
based filtering (supplementary fig. S2, Supplementary
Material online), HaploScore-based filtering retains many seg-
ments shorter than 5 cM at a precision of 0.8 (fig. 4C). Recall of
HaploScore-based filtering at 0.8 precision is 0.19, a 13-fold
increase compared with length-based filtering.

Robustness of Results to HaploScore Parameter
Variation

HaploScore is a function of two parameters: The genotyping
error rate " and the switch error rate �. However, only the
ratio of the two parameters affects the behavior of the score.
To assess the robustness of HaploScore to varying parameters,
a grid search was performed in which " was fixed at 0.0075, �
was varied three orders of magnitude from "/100 to 10", and
the AUC was computed at each grid point (fig. 5A). As ex-
pected, performance was strongest when the ratio of the
parameters was near its true value. However, the performance
degradation was modest across the wide range of parameter
ratio values examined, with the AUC dropping by less than
2% at worst.

Robustness of Results to True IBD Definition

In all analyses above, true IBD segments were defined as child-
other segments that have at least 80% parent-other segment
overlap. To assess the robustness of HaploScore to different
true IBD definitions, a grid search was performed in which the
definition of true IBD was varied from 10% to 100% parent-
other segment overlap in increments of 10%. The AUC was
computed at each grid point (fig. 5B). Performance was gen-
erally stable for all segment lengths and true IBD definitions,
with the exception of 5–6 cM segments at 100% overlap,
where performance degraded appreciably. This is likely due
at least in part to the inherent bias for longer segments to
have more sites at which premature truncation of detected
IBD segments can arise from genotyping or switch errors.

Robustness of Results to Genome-Wide IBD
Identification

To confirm that the results presented are not due to partic-
ular genomic features of chromosome 21, chromosome 10
was analyzed on the full cohort using the same parameters
("= 0.0075, � = 0.003, 80% segment overlap defined true IBD).
The results were qualitatively similar to chromosome 21,
showing that the HaploScore methodology is extensible
genome wide (supplementary fig. S6, Supplementary
Material online). In addition, IBD segments were examined

Table 2. Haplotype and Diplotype Window Matches in Child-Other
Segments Not Contained within a Corresponding Parent-Other
Segment.

Child Diplo Child Haplo Child Both Total

Par none 14,055,602 483,921 5,853,193 20,392,716

Par diplo 7,574,059 77,905 2,068,399 9,720,363

Par haplo 82,378 243,698 372,885 698,961

Par both 931,599 222,127 8,579,104 9,732,830

Total 22,643,638 1,027,651 16,873,581 40,544,870

NOTE.—Par, parent; diplo, diplotype match only; haplo, haplotype match only.

Table 1. Haplotype and Diplotype Window Matches in Child-Other
Segments Contained within a Corresponding Parent-Other Segment.

Child Diplo Child Haplo Child Both Total

Par none 0 0 0 0

Par diplo 6,283,300 56,393 1,045,425 7,385,118

Par haplo 57,353 243,447 236,157 536,957

Par both 1,098,359 243,490 13,733,586 15,075,435

Total 7,439,012 543,330 15,015,168 22,997,510

NOTE.—Par, parent; diplo, diplotype match only; haplo, haplotype match only.
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on all autosomes in the subset of all individuals comprising
the 2,952 unrelated trios. No substantial deviations in perfor-
mance were observed (not shown).

Filtering Spurious Reported IBD Segments Using
HaploScore

HaploScore can be used to filter out spurious segments re-
ported by an IBD detection algorithm as an efficient postpro-
cessing step. The reduced power to detect short segments
requires more stringent HaploScore threshold values for
shorter segments to achieve a similar precision value as for
longer segments (fig. 4). Because HaploScore provides a way
to rank segments, the trade-off between precision and recall
can be tuned to the needs of the particular downstream
application.

HaploScore threshold values to ensure particular average
overlap values of resultant segments were generated (see
Materials and Methods), and three separate filtering results
are shown in figure 6. Notably, more stringent filtering pa-
rameters have the largest effect on short segments and have
nearly the same effect as lenient filtering parameters for seg-
ments over 5 cM (fig. 6). This result is intuitive, as the short
reported segments are enriched for false positives (fig. 2C–F).

Robustness of Results to Alternate Individuals and
Genotyping Platforms

To assess the robustness of the findings in an alternative
population, a cohort of 555 European individuals including
52 father–mother–child trios genotyped as part of the 1000
Genomes project (1000 Genomes Project Consortium 2012)
were analyzed (the “1000 Genomes cohort,” supplementary
table S1, Supplementary Material online). Individuals in the
1000 Genomes cohort were genotyped on the Illumina
HumanOmni2.5-Quad v1-0 B SNP array and as such provide
an independent sample set from which to assess the gener-
alizability of our results to additional individuals and alterna-
tive genotyping platforms.

GERMLINE reported a total of 6,585 child-other segments
on chromosome 21 in the 1000 Genomes cohort. After filter-
ing artifactual IBD segments reported in regions of low site
density, 5,770 child-other segments were retained for analysis.
The number of child-other segments detected in the 1000
Genomes cohort is much smaller than in the 23andMe
cohort (5,770 versus 13,307,562 candidate segments) because
the 1000 Genomes cohort is much smaller. However, the
rate of candidate segment detection is similar: In the
1000 Genomes cohort, there are 5,770 segments for
52� 552 child-other pairs, resulting in an average of
5,770=ð52� 552Þ ¼ 0:20 child-other segments per trio. In
the 23andMe cohort, the corresponding rate is
13,307,562=ð2,952� 25,429Þ ¼ 0:18 child-other segments
per trio.

Analyses of child-other segments detected in the 1000
Genomes cohort were performed analogously to those in
the 23andMe cohort. Only 12% of child-other segments
were encompassed by a parent-other segment, 20% of
child-other segments have a partial parent-other segment
in which at least one segment end is truncated, and the re-
maining 68% of child-other segments have no corresponding
parent-other segment (supplementary fig. S7A,
Supplementary Material online). Analysis of truncated seg-
ments in the 1000 Genomes cohort also strongly suggests
that false child-other IBD accounts for most discrepant seg-
ments, as 92% of opposite homozygote sites that truncate the
1,174 truncated segments have confident genotype calls in
both the parent and other individual (supplementary fig. S7B,
Supplementary Material online). Finally, in the 68% of child-
other segments that have no corresponding parent-other
segment, over 99% contain at least one opposite homozygote
site in the parent (supplementary fig. S7C, Supplementary
Material online). Taken together, these results show that
the 1000 Genomes cohort is also rife with false-positive IBD,
and despite the different genotyping platform used, the error
profile in the 1000 Genomes cohort is qualitatively very sim-
ilar to that in the 23andMe cohort (fig. 1).

FIG. 3. Graph illustrating the HaploScore computation. The HaploScore for an IBD segment of length L can be represented as the minimum-cost path
through the above DAG, where " denotes the probability of a genotyping error and � denotes the probability of a switch error at any given site. The
DAG has one source, one sink, and one level per genotyped site in the IBD segment. At each level l, the DAG contains four nodes, indicating the
haplotype configuration at site l. Each node has weight 0 if the two corresponding alleles are the same, or 1/" if they are different. Each node in level l has
four outgoing directed edges, one to each of the four nodes in level l + 1. The edge weights are 0, 1/�, or 2/�, depending on whether 0, 1, or 2 switch
errors are necessary to explain the transition. For clarity, some edges are omitted in this figure. The source node src has four outgoing directed edges
with weight 0, one to each of the four nodes in level 1. Each node in level L has one outgoing directed edge to the sink node snk with weight 0.
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Examination of the relationship between segment length
and segment overlap in the 1000 Genomes cohort indicates
similar general trends as those discovered in the 23andMe
cohort (compare supplementary fig. S8, Supplementary
Material online, and fig. 2), though the smaller number of
segments makes the results more noisy. Comparison of all
44,542 full 100-site windows in the 5,770 child-other segments
shows that overly permissive diplotype matching causes false
reported IBD segments: The diplotype match criterion is sat-
isfied in 97.1% of windows contained within parent-other
segments and in 96.5% of windows not contained within
parent-other segments, whereas the haplotype match
criterion is satisfied in 68.7% of windows contained within
parent-other segments but in only 51.1% of windows not

A

B

C

FIG. 4. Improving detection of true IBD segments using HaploScore.
(A) Heat map of the mean fraction of reported IBD segments found
in parents, binned by segment genetic length and HaploScore.
Calculations are performed as in figure 2A. (B) Receiver operating char-
acteristic for reported IBD segments of various lengths, discriminating by
HaploScore. True IBD is defined as in figure 2B. The dashed black line
indicates the no-discrimination line. The area under each curve is pa-
renthesized in its legend entry. (C) Precision-recall plot for child-other
segments binned by segment length.

FIG. 6. Segment detection and HaploScore filtering results. Histogram
of number of segments reported after filtering at three
different HaploScore thresholds, t 2 f0:4,0:6,0:8g. Each threshold t cor-
responds to a genetic-length-specific array of maximal HaploScores
allowed to retain all segments with mean segment overlap of at
least t, as described in the HaploScore threshold matrix genera-
tion section of Materials and Methods. Note that the y axis is on a
log scale.

FIG. 5. HaploScore is robust to a wide range of input parameters.
(A) AUCs for a range of genotyping to switch error rate ratios. We
varied the switch error rate � relative to the genotyping error rate ".
For each value of �, we evaluated the resulting AUC discriminating by
HaploScore, where we defined true-positive segments as having a seg-
ment overlap of at least 0.80. (B) AUCs for a range of segment overlap
values required to classify a segment as a true positive. For each of ten
different segment overlap thresholds (0.1, . . . ,1.0), we classified true-
positive segments and calculated the resulting AUC discriminating by
HaploScore.
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contained within parent-other segments (supplementary
table S2, Supplementary Material online), a substantial reduc-
tion (binomial P < 10�300).

Finally, the performance of HaploScore in segregating true-
and false-reported IBD was analyzed in the 1000 Genomes
cohort. The switch error rate was estimated from the data to
be � = 0.003, and the genotyping error rate was estimated to
be "= 0.0075. Similar trends are present in the 1000 Genomes
cohort as are in the 23andMe cohort (compare supplemen-
tary fig. S9, Supplementary Material online, and fig. 4). The
small number of child-other segments analyzed in the 1000
Genomes cohort causes somewhat noisy results, but the ef-
fectiveness of HaploScore as a discriminator between true-
and false-positive IBD is readily apparent.

Discussion
The usage of IBD segments in genetic analyses will become
increasingly common as the number of individuals with their
genetic composition known increases. Because of the inher-
ently quadratic nature of IBD detection between all pairs of
individuals in a cohort, nonprobabilistic methods are required
to keep the computational burden as low as possible.
However, effective filtering methods are required to ensure
reported IBD segments are accurate.

Using the laws of Mendelian inheritance is an effective way
to avoid modeling complex demographic history when eval-
uating the accuracy of population genetics methods including
IBD detection and local ancestry inference (Pasaniuc et al.
2013). By using known familial relationships in a large set of
trios, we were able to analyze the accuracy of IBD segments
reported by GERMLINE on nonsimulated data. We found a
surprisingly large number of false-positive short segments and
showed that these false positives arose due to the diplotype-
based IBD detection mechanism introduced to detect long
IBD segments in the presence of phasing switch errors (Gusev
et al. 2012). We introduced a haplotype-based metric,
HaploScore, that effectively discriminates between true- and
false-reported IBD segments. We also investigated a likeli-
hood-ratio-based metric but found it less effective than
HaploScore (supplementary text, Supplementary Material
online).

Importantly, HaploScore can be computed efficiently using
dynamic programming (in O( j S j ) time per segment, see
Materials and Methods). This suggests a strategy for accurate
IBD detection in population-scale data sets: Detect candidate
segments using a nonprobabilistic IBD detection method
with relatively permissive parameters and then cull true seg-
ments using HaploScore filtering. In addition, HaploScore can
be applied as a postprocessing step to existing genotyping-
and sequencing-based IBD segments, provided that an esti-
mate of the switch error rate and the genotyping error rate
are available.

Achieving optimal HaploScore performance in a different
population cohort or when using an alternative genotyping
platform depends on being able to accurately estimate the
genotyping and switch error rates of the data. Genotyping
error rates can be estimated in any cohort by methods such as
repeat genotyping (Pompanon et al. 2005). Although accurate

determination of switch error rates currently requires trios or
orthogonal analysis methods such as phased sequencing
(Voskoboynik et al. 2013), the robustness of HaploScore to
substantial variations in the parameter ratio indicates that it
should be extensible to non-European populations, genotyp-
ing platforms of different marker density, or even sequencing-
based assays. Indeed, we demonstrated the robustness and
generalizability of HaploScore by analyzing an independent
cohort of 555 European individuals from the 1000 Genomes
project who were genotyped on a chip nearly twice as dense
as the 23andMe chip. Although the smaller sample size of the
1000 Genomes cohort produced noisier results, all major find-
ings of the analysis of the 23andMe cohort were replicated in
the 1000 Genomes cohort.

Python code implementing HaploScore filtering and the
IBD segments analyzed herein are freely available (https://
github.com/23andMe/ibd, last accessed May 8, 2014).

Materials and Methods

Cohort Description

The 23andMe cohort analyzed comprises 25,432 customers of
23andMe, Inc., a personal genetics company, who were gen-
otyped on the Illumina HumanOmniExpress + BeadChip as
part of the 23andMe Personal Genome Service. The chip
contains approximately 1,000,000 sites genome wide (Hinds
et al. 2013). Individuals were selected for having more than
97% European ancestry as described previously (Hinds et al.
2013). The 23andMe cohort includes 2,952 distinct father–
mother–child trios identified by IBD sharing (Henn et al.
2012). Parent–child relationships were defined as having at
least 85% of the genetic length of the genome shared on at
least one haplotype and no more than 10% of the genetic
length of the genome shared on both haplotypes. Parent–
parent relationships were defined as having at most 20% of
the genetic length of the genome shared on at least one
haplotype.

The 1000 Genomes cohort analyzed comprises 555 indi-
viduals from five European populations who were genotyped
on the Illumina HumanOmni2.5-Quad v1-0 B SNP array as
described previously (1000 Genomes Project Consortium
2012) (samples available at ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/technical/working/20120131_omni_geno
types_and_intensities/Omni25_genotypes_2141_samples.
b37.vcf.gz, last accessed May 8, 2014). The 1000 Genomes
cohort includes 52 distinct father–mother–child trios identi-
fied within the 1000 Genomes project (metadata available at
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/work-
ing/20130606_sample_info/20130606_sample_info.txt, last
accessed May 8, 2014) and which we validated independently
by IBD sharing (supplementary table S1, Supplementary
Material online). All members of the 1000 Genomes cohort
were verified to not be present in the 23andMe cohort.

Ethics Statement

All participants in the 23andMe cohort were drawn from the
customer base of 23andMe, Inc., a consumer genetics com-
pany. Informed consent was obtained. Individual-level
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genotype data are protected pursuant to 23andMe’s research
protocol approved by the external AAHRPP-accredited IRB,
Ethical & Independent Review Services (E&I Review), and
cannot be released. Details of the 1000 Genomes cohort are
described elsewhere (1000 Genomes Project Consortium
2012).

IBD Detection
The 23andMe Cohort
Genotypes of all individuals included in the 23andMe cohort
were phased using BEAGLE (Browning SR and Browning BL
2007) version 3.3.1 in batches of 8,000–9,000 individuals as
described previously (Hinds et al. 2013). In each batch, we
excluded sites with minor allele frequency less than 0.001,
Hardy–Weinberg equilibrium P < 10�20, call rate< 95%, or
large allele frequency discrepancies compared with the 1000
Genomes Project reference data. Input haplotypes were
restricted to sites present in the intersection of all batch-
filtered sites and resulted in 12,881 sites on chromosome 21
and 48,372 sites on chromosome 10.

For each of the 2,952 trio children, candidate IBD segments
were calculated between the child and all 25,429 other indi-
viduals who were not the parents of that child. For each of the
5,904 (= 2� 2,952) trio parents, candidate IBD segments were
calculated between the parent and all 25,430 other individuals
who were not the child of that parent. All candidate IBD
segments were calculated using the GERMLINE (Gusev
et al. 2009) algorithm with the parameters -bits 100

-err_hom 2 -err_het 0 -w_extend -min_m 2 -map

<geneticmap>, corresponding to the empirical genotyp-
ing and switch error rates of the data (see HaploScore
parameter estimation). The genetic map used was generated
by the Phase II HapMap (Frazer et al. 2007) (available at
http://hapmap.ncbi.nlm.nih.gov/downloads/recombination/
2011-01_phaseII_B37/genetic_map_HapMapII_GRCh37.tar.
gz, last accessed May 7, 2014) and lifted over to NCBI Build
GRCh37 coordinates using the UCSC Genome Browser (Kent
et al. 2002) liftOver tool. To omit clearly artifactual candidate
IBD segments arising from sequence assembly gaps and plat-
form effects, candidate segments were filtered by site density
(Zhuang et al. 2012). Segments with a site density (measured
in sites/cM) in the lowest 10% of all 1 cM windows on the
chromosome were omitted. All remaining candidate IBD seg-
ments were retained.

The 1000 Genomes Cohort
Genotypes of all 555 individuals in the 1000 Genomes cohort
were phased using BEAGLE (Browning SR and Browning BL
2007) version 3.3.1 in a single batch. Windows of 3,000 sites
that overlapped by 100 sites were stitched together as
described previously (Hinds et al. 2013). Sites that were not
polymorphic in the 555 individuals examined had a 1000-
Genomes-reported Hardy–Weinberg equilibrium P < 10�20

or a call rate within the 555 individuals examined less than
95% were excluded, resulting in 23,142 sites on chromosome
21. GenCall genotype scores were set to 0 for all sites not
called in each individual.

Candidate IBD segments were identified and filtered iden-
tically to those found in the 23andMe cohort described
above.

HaploScore Description and Computational
Complexity

HaploScore provides a metric by which to rank the likeli-
hood that a stretch of DNA is inherited IBD between two indi-
viduals or not. Let " and � denote the probability of
a genotyping error and a switch error at any given
site, respectively. The HaploScore for a candidate IBD segment
S is

HaploScoreðSÞ ¼
1

j S j

ng

�
+

ns

�

� �
ð1Þ

where j S j is the number of genotyped sites in S, and ng and
ns are the number of genotyping and switch errors, respec-
tively, that together minimize the score while reconciling the
segment as matching across a single haplotype in both
individuals.

Finding the HaploScore (i.e., the optimal values of ng and ns

subject to the constraints) can be viewed as finding the min-
imum-cost path through the directed acyclic graph (DAG)
described below (fig. 3).

Let G be a DAG with a single source node and a single
sink node. Between the source and the sink, the graph
has j S j levels, one per genotyped site in segment S. Each
of these j S j levels has four nodes, one for each possi-
ble haplotype configuration. Each node in level l has
four outgoing directed edges, one to each node in level
l + 1. Below, we use the same notation for nodes and their
weights.

At any level l, let hði, jÞ
l , i, j 2 f1, 2g denote the four pos-

sible haplotype configurations of an IBD match. The nodes
are weighted as follows:

hði,jÞl ¼

0 if haplotype i in first individual
matches haplotype j in second
individual at position l,

1=� otherwise:

8>><
>>:

ð2Þ

Let eði,jÞ,ðu,vÞ
l denote the weight of the edge between nodes

hði,jÞl and hðu,vÞ
l + 1 . Edges are weighted as follows:

eði,jÞ,ðu,vÞ
l ¼

0 if i ¼ u and j ¼ v,

1=� if i ¼ u and j 6¼ v,

1=� if i 6¼ u and j ¼ v,

2=� if i 6¼ u and j 6¼ v:

8>><
>>:

ð3Þ

The weights of the four edges from the source node to the
nodes in the first level, as well as the weights from the nodes
in level j S j to the sink node, are set to 0. The cost of a path in
G is defined as the sum of the weights of the edges and nodes
it traverses.

HaploScore(S) is equal to the smallest of all path costs
from the source to the sink. It can be efficiently com-
puted using dynamic programming by noting that the
smallest cost from the source to level l + 1 in the
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graph can easily be inferred from the smallest cost from
the source to level l. Let Cði,jÞl denote the smallest cost
from the source to haplotype configuration (i, j) at level l.
Then,

Cðu,vÞ
l + 1 ¼ min

i,j,u,v
Cði,jÞl + eði,jÞ,ðu,vÞ

l + hðu,vÞ
l + 1

� �
: ð4Þ

The minimum cost to reach level l, C�l , is then

C�l ¼ min
i,j

Cði,jÞl : ð5Þ

The above equations clearly show that computing
HaploScore(S) involves 16 comparisons at each genotyped
site in S. Thus, the complexity of computing HaploScore(S)
is at most 16 j S j . Performance can be further improved
when filtering by HaploScore by terminating computation
as soon as a segment’s HaploScore becomes too high to satisfy
the maximum value threshold.

HaploScore Parameter Estimation

HaploScore uses two parameters, the genotyping error rate
per site " and the switch error rate per site �. Analyses of
genotyping chip accuracy (Paynter et al. 2006) and internal
comparisons between genotype and whole-genome sequenc-
ing data verify that the genotyping error rate is less than 1%
(not shown). To estimate the empirical switch error rate per
site, all 2,952 trios in the 23andMe cohort were trio-phased
using the laws of Mendelian inheritance, and the results for all
children were compared with their BEAGLE-phased haplo-
types, assuming that the trio-phased haplotypes represented
the true phase. The average per-site switch error rate ranged
from 0.0019 (on chromosome 6) to 0.0043 (on chromosome
19) but deviated only modestly from a constant rate on each
chromosome (supplementary fig. S4, Supplementary Material
online).

The switch error rate calculation process described above
was performed independently on the 1000 Genomes cohort.
A total of 3,629 switch errors were detected in the 52 trio
children over 23,142 sites. This corresponds to an individual
switch error rate per site of 3,629/(52� 23,142) = 0.003.

HaploScore Threshold Matrix Generation

A matrix of HaploScore thresholds was generated in the fol-
lowing manner: All segments were binned by genetic length
in 0.1 cM increments from 2 to 10 cM. In each length bin,
segments were segregated by their segment overlap into 100
equally sized overlap bins. The score threshold in each overlap
bin was initially set to be the average HaploScore of all seg-
ments within the bin. To ensure monotonicity, the score
threshold was then taken to be the maximum of the scores
in all bins of equal or higher overlap at that segment length.
A file containing the maximum HaploScore value thresholds
calculated for all genetic lengths and mean overlap values in
the 23andMe cohort is available (supplementary file S1,
Supplementary Material online).

Supplementary Material
Supplementary figures S1–S10, text, file S1, and tables S1–S4
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).

Acknowledgments

The authors thank the customers of 23andMe who contrib-
uted the genetic data that made this research possible and are
grateful to the employees of 23andMe for creating and sup-
porting the resources necessary for this research. They also
thank members of the 23andMe research team for insightful
comments. This work was supported by the National Human
Genome Research Institute of the National Institutes of
Health (grant number R44HG006981).

References
1000 Genomes Project Consortium. 2012. An integrated map of genetic

variation from 1,092 human genomes. Nature 491:56–65.
Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T,

Nielsen FC, Nielsen R. 2009. Relatedness mapping and tracts of
relatedness for genome-wide data in the presence of linkage dis-
equilibrium. Genet Epidemiol. 33:266–274.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
alignment search tool. J Mol Biol. 215:403–410.

Brown MD, Glazner CG, Zheng C, Thompson EA. 2012. Inferring coan-
cestry in population samples in the presence of linkage disequilib-
rium. Genetics 190:1447–1460.

Browning BL, Browning SR. 2007. Efficient multilocus association testing
for whole genome association studies using localized haplotype
clustering. Genet Epidemiol. 31:365–375.

Browning BL, Browning SR. 2011. A fast, powerful method for detecting
identity by descent. Am J Hum Genet. 88:173–182.

Browning BL, Browning SR. 2013. Improving the accuracy and efficiency
of identity-by-descent detection in population data. Genetics 194:
459–471.

Browning SR, Browning BL. 2007. Rapid and accurate haplotype phasing
and missing-data inference for whole-genome association studies by
use of localized haplotype clustering. Am J Hum Genet. 81:
1084–1097.

Browning SR, Browning BL. 2010. High-resolution detection of identity
by descent in unrelated individuals. Am J Hum Genet. 86:526–539.

Browning SR, Browning BL. 2012. Identity by descent between distant
relatives: detection and applications. Annu Rev Genet. 46:617–633.

Fan JB, Oliphant A, Shen R, Kermani B, Garcia F, Gunderson K, Hansen
M, Steemers F, Butler S, Deloukas P, et al. 2003. Highly parallel SNP
genotyping. In: Cold Spring Harbor symposia on quantitative biol-
ogy. Vol. 68. Woodbury (NY): Cold Spring Harbor Laboratory Press.
p. 11797–2924.

Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont
JW, Boudreau A, Hardenbol P, Leal SM, et al. 2007. A second gen-
eration human haplotype map of over 3.1 million SNPs. Nature 449:
851–861.

Gusev A, Kenny EE, Lowe JK, Salit J, Saxena R, Kathiresan S, Altshuler
DM, Friedman JM, Breslow JL, Pe’er I. 2011. DASH: a method for
identical-by-descent haplotype mapping uncovers association with
recent variation. Am J Hum Genet. 88:706–717.

Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL, Friedman
JM, Pe’er I. 2009. Whole population, genome-wide mapping of
hidden relatedness. Genome Res. 19:318–326.

Gusev A, Palamara PF, Aponte G, Zhuang Z, Darvasi A, Gregersen P,
Pe’er I. 2012. The architecture of long-range haplotypes shared
within and across populations. Mol Biol Evol. 29:473–486.

Han L, Abney M. 2011. Identity by descent estimation with dense
genome-wide genotype data. Genet Epidemiol. 35:557–567.

2221

Reducing False-Positive IBD Segments . doi:10.1093/molbev/msu151 MBE
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/31/8/2212/2925728 by guest on 20 M

arch 2024

<
to
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
 cM
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu151/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


Han L, Abney M. 2013. Using identity by descent estimation with dense
genotype data to detect positive selection. Eur J Hum Genet. 21:
205–211.

Henn BM, Hon L, Macpherson JM, Eriksson N, Saxonov S, Pe’er I,
Mountain JL. 2012. Cryptic distant relatives are common in both
isolated and cosmopolitan genetic samples. PLoS One 7:e34267.

Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM, St
Pourcain B, Ring SM, Mountain JL, Francke U, et al. 2013. A genome-
wide association meta-analysis of self-reported allergy identifies
shared and allergy-specific susceptibility loci. Nat Genet. 45:907–911.

Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S,
Stefansson H, Sulem P, Gudbjartsson D, Maloney J, et al. 2012.
A mutation in APP protects against Alzheimer’s disease and age-
related cognitive decline. Nature 488:96–99.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D. 2002. The human genome browser at UCSC. Genome
Res. 12:996–1006.

Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson
G, Olason PI, Ingason A, Steinberg S, Rafnar T, et al. 2008. Detection
of sharing by descent, long-range phasing and haplotype imputa-
tion. Nat Genet. 40:1068–1075.

Krawitz PM, Schweiger MR, Rödelsperger C, Marcelis C, Kölsch U, Meisel
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