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Abstract

Molecular evolution is simultaneously paced by mutation rate, genetic drift, and natural selection. Life history traits also
affect the speed of accumulation of nucleotide changes. For instance, small body size, rapid generation time, production of
reactive oxygen species (ROS), and high resting metabolic rate (RMR) are suggested to be associated with faster rates of
molecular evolution. However, phylogenetic correlation analyses failed to support a relationship between RMR and
molecular evolution in ectotherms. In addition, RMR might underestimate the metabolic budget (e.g., digestion,
reproduction, or escaping predation). An alternative is to test other metabolic rates, such as active metabolic rate (AMR),
and their association with molecular evolution. Here, I present comparative analyses of the associations between life
history traits (i.e., AMR, RMR, body mass, and fecundity) with rates of molecular evolution of and mitochondrial loci from
a large ectotherm clade, the poison frogs (Dendrobatidae). My results support a strong positive association between mass-
specific AMR and rates of molecular evolution for both mitochondrial and nuclear loci. In addition, I found weaker and
genome-specific covariates such as body mass and fecundity for mitochondrial and nuclear loci, respectively. No direct
association was found between mass-specific RMR and rates of molecular evolution. Thus, I provide a mechanistic
hypothesis of the link between AMRs and the rate of molecular evolution based on an increase in ROS within germ line
cells during periodic bouts of hypoxia/hyperoxia related to aerobic exercise. Finally, I propose a multifactorial model that
includes AMR as a predictor of the rate of molecular evolution in ectothermic lineages.
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Introduction
Molecular evolution is paced by the combined effects of
mutation rate, genetic drift, and natural selection (Graur
and Li 2000). Likewise, the rate of the accumulation of nu-
cleotide changes per unit of time also correlate with life
history traits including physiological attributes at both or-
ganismal and cellular levels (Martin and Palumbi 1993;
Bromham and Penny 2003; Gillooly et al. 2005). For in-
stance, small body size, rapid generation time, production
of reactive oxygen species (ROS), and high basal metabolic
rates (BMRs or RMRs from ectotherms) are hypothesized
to correlate with higher rates of molecular substitution
(Welch et al. 2008; Galtier et al. 2009). However, recent
studies have shown contradictory evidence about such
associations. For example, faster generation times tend
to be correlated with higher rates of molecular evolution
in invertebrates (Thomas et al. 2010), but BMRs have been
found to be independent of the speed of molecular evolu-
tion in both ectotherm and endotherm vertebrates if
phylogeny is accounted (Lanfear et al. 2007; Nabholz
et al. 2008). Other physiological parameters, such as active
metabolic rates (AMRs), have not been tested for their
associations with molecular evolution.

Metabolism or energy flux within an organism relates
growth, reproduction, and self-maintenance (Karasov and

Martinez del Rio 2007). RMRs represent the lowest bound
of the metabolic budget, whereas AMRs constitute the
upper limit achieved at the highest physical activity
(Schmidt-Nielsen 1984). Another related parameter is
aerobic scope (hereafter Scope), which is an adjusted mea-
surement of AMR (i.e., Scope 5 AMR � RMR). AMR and
Scope are proxies of the athletic prowess and measure the
targeted oxygen supply to muscles during forced activity
(Gatten et al. 1992; Bishop 1999). Most organisms function
with an average metabolic rate (called field metabolic rate
[FMR]), which is a mean energetic cost of life cycle activities
during a day (e.g., growth, sleep, digestion, reproduction,
and escaping predation). Therefore, FMR might be consid-
ered to be closer to AMR than to RMR (Butler et al. 2004;
Nagy 2005; Hillman et al. 2009).

All metabolic rates measure energy production in the
form of heat at different levels of physical activity
(Schmidt-Nielsen 1984). The chief mechanism of energy
production is cell respiration; however, this process is
not completely efficient and generates mutagenic byprod-
ucts such as ROS (Galtier et al. 2009). Accordingly, oxidative
stress is defined as the damage resulting from injuries
inflicted by ROS and other nonradicals, such as reactive
aldehydes and singlet oxygen (Yu 2005; Monaghan et al.
2009). Mutation rates are assumed to reflect the causal
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effect of oxidative stress in the form of DNA damage
(Martin and Palumbi 1993). Yet, other life history traits,
including body mass, generation time, fecundity, and
DNA repair mechanisms, also influence, alone or in com-
bination, the rates of molecular evolution (Brown et al.
2000, 2004; Bromham 2009, 2011).

At least three main hypotheses were proposed to ex-
plain the variability in rates of molecular evolution among
genes and lineages. However, none of these hypotheses
explain all the variation in molecular evolution rates by
a single predictor; instead, they suggest a set of likely
covariates causing a synergistic effect on rates (Bromham
2011). The generation time hypothesis suggests an inverse
association between the time of reproduction and the
substitution rates in germ line DNA (Ohta 1993; Smith
and Donoghue 2008; Thomas et al. 2010). This model im-
plies that higher rates of molecular evolution are associated
with shorter generation times and faster accumulation of
DNA replication errors per unit of time (Bromham et al.
1996). Evidence consistent with this hypothesis includes
shorter generation times associated with faster mutation
rates (e.g., higher synonymous dS substitution rates)
in mammals (Bromham et al. 1996; Welch et al. 2008). Even
though the generation timehypothesis is supported in some
invertebrate lineages (Thomas et al. 2010), its generality
across ectotherms is unknown.

The longevity hypothesis inversely relates the length of
lifespan and the age at the onset of senescence with the
rate of molecular evolution (Nabholz et al. 2008). This
hypothesis predicts higher substitution rates in early repro-
ducing lineages, mitochondrial genomes, and nonfunc-
tional domains of protein-coding genes (Bromham
2011). In contrasts, late reproducing organisms are
expected to have adaptations for efficient DNA repair
and management of free radicals (Galtier et al. 2009).
Evidence in favor of this hypothesis includes long-lived
endotherms that have better DNA maintenance (e.g., high-
er tumor suppression and reduced telomerase activity),
lower ROS production, slower mitochondrial decay, and
larger body sizes (Bromham 2011). Extensive phylogenetic
studies are required to test the generality of the longevity
hypothesis in ectotherms.

Finally, the metabolic rate hypothesis states that the
pace of molecular evolution is correlated with the produc-
tion of free radicals (e.g., ROS) during oxidative cell respi-
ration (Martin and Palumbi 1993). This hypothesis assumes
that variation in RMRs should positively correlate with the
levels of ROS and the rates of molecular evolution (Martin
et al. 1992; Gillooly et al. 2005). Several lines of evidence
support the metabolic rate hypothesis: endotherms have
much higher rates than ectotherms (Martin 1999), species
with high mass-specific RMRs have greater DNA repair
rates (Foksinski et al. 2004), high mutation rates in mito-
chondrial DNA is explained by its closeness to the site of
aerobic respiration (Rand 1994), and senescence is associ-
ated with ROS production and mitochondrial decay
(Ricklefs 2008). However, phylogenetic comparative analy-
ses have challenged the association of RMRs with the rates

molecular evolution in ectotherms and endotherms
(Seddon et al. 1998; Lanfear et al. 2007; Bromham 2009).
To my knowledge, no comparative analyses have tested
the association between other metabolic rates (i.e., AMRs
or FMRs) and the rates of molecular evolution.

To test if AMRs are associated with genome-wide in-
creases in molecular evolution rates, I compiled data on
metabolic rates (AMR and RMR), life history (i.e., body
mass and clutch size), rates of molecular evolution (nuclear
and mitochondrial), and phylogenetic relationships of
a large ectotherm lineage, the poison frogs (Dendrobati-
dae). These Neotropical amphibians form a widespread
clade of approximately 285 species with diverse biological
characteristics such as parental care, aposematism, and
metabolic rates (Summers 2000; Santos et al. 2003; Santos
and Cannatella 2011). Here, due to the generality of the
main question (i.e., Are AMRs associated with genome-wide
increases in molecular evolution rates?), I explored three
main hypotheses based on the complexity and location
of the employed molecular markers. Specifically, I tested if
AMR and other life history traits predict rates of molecular
evolution of 1) RNA-coding stem–loop mitochondrial genes
(e.g., ribosomal and tRNAs), 2)mitochondrial protein-coding
genes, and 3) nuclear protein-coding genes.

To answer these specific questions, I used single predic-
tor and multivariate phylogenetic comparative methods.
Three approaches were employed, namely, 1) relative rate
tests (RRTs) using pairs of sister species (Bromham et al.
2000), 2) phylogenetic generalized least squares (PGLS)
on absolute rates of molecular evolution (Lanfear et al.
2010), and 3) phylogenetic path analysis based on indepen-
dent contrasts (Santos and Cannatella 2011) and Bayesian
analyses (Lartillot and Poujol 2011) to estimate variance–
covariance (VCV) matrices of life history traits on absolute
rates, synonymous substitution (dS) rates, and x (i.e., ratio
of nonsynonymous to synonymous substitutions or dN/dS).

Materials and Methods

Metabolic Rates, Body Mass, and Fecundity Data
Life history and metabolic rate parameters of 54 species of
poison frogs were compiled from Santos and Cannatella
(2011) (supplementary tables 1 and 2, Supplementary
Material online). The included variables were 1) resting
metabolic rate (RMR, oxygen consumption while resting
or VO2 rest consumed � h�1); 2) AMR after nonsustain-
able exercise (AMR, oxygen consumption after forced
activity or VO2 active consumed � h�1); 3) Scope calcu-
lated as the difference between AMR and RMR (Gatten
et al. 1992); 4) mean body mass to the nearest 0.01 g of
all the individuals tested in the metabolic experiments;
and 5) a proxy for fecundity (i.e., clutch size) estimated
by the maximum number of eggs per clutch, mature oo-
cytes per female, or back-riding tadpoles carried by nursing
parent because most dendrobatid species transport their
entireprogenyatonce (Wells 2007).However, true fecundity
should be defined as the maximum number of potential
progeny (Hamilton 2009).
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All the physiological data were measured from a total of
474 adult individuals at 24.5–25.5 �C under the guidelines
of an animal care permit (IACUC # 05111001). Details of
the physiological experiments were previously described
including capture, handling, and metabolic rate estimation
(Santos and Cannatella 2011). From the physiological raw
data, mass-specific metabolic rates (AMR, RMR, and Scope)
were estimated by dividing raw metabolic rates by the
body mass of each individual. The average of all conspecific
individual rates was used as the species mass-specific
metabolic rate in the bivariate and multivariate comparative
analyses. Body mass, fecundity, and mass-corrected meta-
bolic rates were transformed using natural logarithms to
improve the data distribution as required by the comparative
analyses of rates of molecular evolution (e.g., to meet the
requirement that variances of life history trait differences
were not related to their absolute values) (Lanfear et al. 2010).

Molecular Data
The sequence alignments included the 54 species for which
metabolic rates were measured with the exception of the
ND1 gene sequence of Allobates juanii. The supermatrix
included both mitochondrial (total mtDNA ; 5.5 kb)
and nuclear loci (total nuclear DNA ; 5.0 kb). The ana-
lyzed mitochondrial genes were 12S and 16S rDNAs; valine,
leucine, and methionine tRNAs (tRNAs V–L–M); NADH
subunit 1 (ND1); NADH subunit 2 (ND2); and cytochrome
b (CYTB). The nuclear data included protein-coding seg-
ments of the following genes: brain-derived neurotrophic
factor (BDNF), bone morphogenetic protein 2 (BMP2),
NCX1 sodium-calcium exchanger 1 (NACA), 3#-nucleotidase
(NT3), proopiomelanocortin A (POMC), tyrosinase precursor
(TYR), and zinc finger E-box binding homeobox 2 (ZFX). All
sequences were validated by comparison with other anuran
sequences using NCBI BLAST as previously suggested
(Santos et al. 2009). Details of polymerase chain reaction
amplifications and sequencing of individual fragments were
described elsewhere (Santos and Cannatella 2011), GenBank
accession numbers are given in supplementary table 3 (Sup-
plementary Material online), and all sequence alignments
are deposited at http://datadryad.org/. The concatenated
supermatrix from all the genes included a total of 8,517 un-
ambiguously aligned characters and was used to estimate
the phylogeny of poison frogs.

Supermatrix Tree Estimation
The supermatrix phylogeny was analyzed under a parti-
tioned by gene approach. The model of nucleotide substi-
tution from each partition was determined using
ModelTest v. 3.7 (Posada and Crandall 1998; Posada and
Buckley 2004), and all gene and partition matrices favored
complex models approximated by GTR þ C þ I without
significant over-parametrization (Lemmon and Moriarty
2004) (see supplementary tables 4 and 5, Supplementary
Material online). The supermatrix maximum likelihood
(ML) tree was estimated using a genetic algorithm in GARLI
v. 0.960 (Zwickl 2006) and sequential and parallel ML-based
inferences in RAxML v. 7.0.4 (Stamatakis 2006). For each

methodology, a total of 30 independent runs were used
to infer the best tree, and 500 nonparametric bootstrap
searches determined the support of the nodes. Both pro-
grams gave similar topologies; the RAxML phylogeny was
used for all the comparative analyses and is deposited at
http://datadryad.org/. A complementary Bayesian phyloge-
netic inference was performed using MrBayes v. 3.4
(Huelsenbeck and Ronquist 2001) with default settings
for all priors. The Markov Chain Monte Carlo (MCMC)
setup included four independent runs, each one with four
chains of 50 million generations with a sampling rate every
1,000 generations. The convergence of the runs was deter-
mined using Tracer v. 1.4 (Rambaut and Drummond 2007).
Approximately, 30,000 trees were discarded as burnin. The
supermatrix phylogeny did not significantly differ from pre-
vious studies (Santos et al. 2003, 2009) with the exception
of Clade C and B as sister lineages (fig. 1). The taxonomic
nomenclature of poison frogs was based on the unequiv-
ocal monophyly of Dendrobatidae, and Dendrobates was
considered a single genus (Santos et al. 2009).

Single-Predictor Phylogenetic Comparative Analyses
Two single predictor approaches were used for the com-
parative analyses. These include a (tables 1 and 2) RRT us-
ing pairs of sister species (Bromham et al. 2000) and PGLS
correlation analyses (Martins and Hansen 1997; Pagel 1997)
on absolute rates of molecular evolution (Lanfear et al.
2010). For the RRT, branch lengths were assumed to rep-
resent the number of substitutions since the divergence
form a common ancestor (Lanfear et al. 2007). Due to
the complexity and diversity of the molecular markers em-
ployed, three sets of particular genes were defined based on
marker characteristics: mitochondrial RNA-coding stem–
loop genes (i.e., 12S, 16S, and tRNAs); concatenated mito-
chondrial protein-coding genes (i.e., CYTB, ND1, and ND2);
and concatenated nuclear protein-coding genes (i.e., BDNF,
BMP2, NACA, NT3, POMC, TYR, and ZFX). The RRT method
included the following steps: 1) the model of nucleotide
substitution from each matrix was determined using Mod-
elTest v. 3.7 (supplementary tables 4 and 5, Supplementary
Material online) (Posada and Crandall 1998; Posada and
Buckley 2004); 2) individual stem–loop mitochondrial
genes, concatenated mitochondrial protein-coding, and
concatenated nuclear protein-coding branch lengths were
estimated over the constrained supermatrix RAxML topol-
ogy using Paup v. 4.0 (Swofford 2000); 3) each pair of sister
species was considered as a single independent contrast
(Bromham et al. 2000); 4) the comparisons included only
taxa with branch lengths ,1.0 to ensure that saturated
points are excluded from the analyses; 5) the independent
variables corresponded to any of the analyzed life history
traits (i.e., mass-specific RMR, mass-specific AMR, mass-
specific Scope, body mass, and fecundity) calculated as
ln (T1/T2), where T1 was the trait value for species 1, T2
was the trait value for species 2, the assignation to either
T1 or T2 was randomized (Lanfear et al. 2007); 6) the de-
pendent variable (i.e., branch length) was calculated as ln
(L1/L2), where L1 was the branch length of species 1, L2 was
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the branch length of species 2, and the assignation followed
the order of the independent variable (Lanfear et al. 2007),
and this logarithmic transformation was required to meet
the assumption that the variance of life history traits and
rates differences increases linearly with evolutionary time
(Lanfear et al. 2010); 7) each comparison pair was scored
as ‘‘þ’’ or success if the sign of the difference in the life
history trait and branch length were identical and as ‘‘–’’
or failure, if otherwise; 8) the process was iterated again
starting from step 3) after pruning species pairs whose con-
trasts were already calculated; 9) the iterative process
was repeated until the maximum number of species pairs
was attained (Brown and Pauly 2005); 10) to ensure that
sufficient information was available, the test of Welch

andWaxman was used to identify and exclude shallow con-
trasts from the analyses (Welch and Waxman 2008); 11)
nonparametric sign tests were performed between the ob-
served sign scores against a null hypothesis of equal num-
ber of ‘‘þ’’ and ‘‘–’’ signs (i.e., H0: P5 0.5 vs. H1: P 6¼ 0.5) and
P values were reported with a significance level of a5 0.05
for a two-sided distribution; and 12) due to the multiple
testing, a false discovery rate (FDR) procedure was required
to identify the expected proportion of false positives
among all significant results. The FDR procedure has been
previously described (Benjamini and Hochberg 1995) as fol-
lows: for H1, H2, . . ., Hm hypotheses based on corresponding
P values such as P1, P2, . . ., Pm; let P(1) � P(2) � . . .� Pm be
the ordered P values; define H(i) as the null hypothesis

FIG. 1. Poison frog phylogeny, life history traits, absolute rates of molecular evolution, x (dN/dS), and dS rates at terminal branches for
mitochondrial and nuclear loci. Circles represent an area proportional to each life history variable, including its maximum and minimum values.
AMR (right tree) and dS rates (left tree) are the reconstructions of ancestral states. Fecundity indicates the largest number of eggs per clutch or
back-riding tadpoles (tadpole sign) per species. Box plots are the distribution of the root-to-tip distances of the ML tree for each molecular
segment analyzed. Mass-specific AMR values above or below all species mean are indicated (i.e., : 5 high AMR and = 5 low AMR,
respectively). Support values in the phylogeny correspond to the summary of 500 ML nonparametric bootstraps estimated with GARLI (left),
RAxML (center), and posterior probabilities (right). (d) represents 100% of nodal support.
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corresponding to P(i); then the FDR procedure is deter-
mined as follows; let k be the largest i for which
PðiÞ � i

m q�, then reject all H(i) i 5 1, 2, . . ., k; where q*
was significant at the a 5 0.05 level for a one-sided
distribution.

In a complementary analysis, branch lengths based on
dN and dS substitutions were determined from concate-
nated mitochondrial and nuclear protein-coding sequen-
ces. Branch lengths were estimated with a free x for
each branch across the phylogeny using CODEML module
of PAML v. 4.3 (Yang 2007). The following parameter alter-
natives of PAML were used: 1) without assuming a molec-
ular clock (clock: 0); 2) with codon frequencies estimated
from the average nucleotide frequencies at the three codon
positions (CodonFreq: 2); 3) including all sites (cleandata:
0); 4) x ratio free to vary across the tree (model: 1, NSsites:
0, and fix_omega: 0). Branch length estimations were run
three times with three starting values of x (i.e., 0.4, 1.0, and
2.4) to avoid problems arising from local optima (Yang and
Nielsen 1998). The same described RRT procedure (see pre-
vious paragraph) was used to determine the associations
between life history traits with dN and dS branch lengths.

A clarification needs to be made to explain why the use
of only extant sister pairs was not warranted for poison
frogs. First, these frogs are a recent monophyletic clade

of approximately 40 Ma (Santos et al. 2009), and the ex-
pected number of substitutions is far less than in older
groups common in RRT analyses (e.g., Arthropoda, Aves,
Mammalia, or Mollusca). Second, several of the sister taxa
from the concatenated nuclear matrix were excluded for
being shallow contrasts after the Welch and Waxman test.
These exclusions reduced the total number of sister pairs to
less than half, consequently, reducing the power of sign
tests and the ability to detect underlying patterns in the
data (Lanfear et al. 2010). Finally, the RRT is a single pre-
dictor test, and recent studies strongly advocate for more
powerful multivariate analyses such as covariance analyses
(Lartillot and Poujol 2011) and structural equation models
(Santos and Cannatella 2011). These procedures convey
multifactor inferences and reveal indirect relationships,
which are better suited when dealing with covarying life
history traits.

Absolute rates of molecular evolution per species were
determined for the RNA-coding stem–loop mitochondrial
genes, concatenated mitochondrial, and nuclear matrices
using the method developed by Brown and Pauly
(2005). The absolute rates were independent of time,
and their estimation can be summarized in the following
steps: 1) a user-specified starting ultrametric tree was es-
timated using the RAxML supermatrix topology under a pe-
nalized likelihood rate smoothing (Sanderson 2002) with
the dendrobatid crown node set to 40.931 arbitrary units
of time in TreeEdit v. 1.0 (Rambaut and Charleston 2002),
and this number reflects the approximate age of Dendro-
batidae inMa (Santos et al. 2009); 2) the chronogramof each
set was estimated using a relaxed clock model approach
implemented in Beast v. 1.5.3 (Drummond and Rambaut
2007) with four user-defined priors, namely, a molecular
model for each sequence group (supplementary tables 4
and 5, Supplementary Material online), the user-specified
starting ultrametric tree, a normally distributed arbitrary
age of the root (mean 40.931 and standard deviation
[SD] 5.360) based on the age of Dendrobatidae (Santos
et al. 2009), and an U(0, 100) hyperprior for ucld.mean;
3) suggested modifications for default MCMC operators
were determined after 2 runs of 2 million generations with
a sampling rate every 1,000 generations; 4) the final

Table 1. Results of the Sign Test on Branch Lengths and PGLS between Molecular and Life History Variables of Poison Frogs.

RMR (Mass Specific) AMR (Mass Specific) Mass Fecunditya

Gene/Codon/Substitution 1/2 PSign l rPGLS 1/2 PSign l rPGLS 1/2 PSign l rPGLS 1/2 PSign l rPGLS

Mitochondrial 12S (10/10) 1.00 0.64 –0.03 (13/7) 0.26 0.72 0.40** (8/12) 0.50 0.63 –0.02 (9/8) 1.00 0.93 0.08
16S (11/8) 0.65 0.71 0.21 (10/9) 1.00 0.70 0.32* (10/9) 1.00 0.65 0.13 (8/8) 1.00 0.92 0.05
tRNA (9/9) 1.00 0.68 –0.19 (6/12) 0.24 0.73 –0.18 (11/7) 0.48 0.64 0.09 (6/9) 0.61 0.92 –0.16
Protein
coding (10/10) 1.00 0.59 0.15 (11/9) 0.82 0.70 0.41** (10/10) 1.00 0.66 0.18 (8/8) 1.00 0.90 0.14
dN (13/8) 0.38 0.76 –0.22 (11/10) 1.00 0.69 –0.05 (11/10) 1.00 0.69 0.22 (8/9) 1.00 0.95 0.15
dS (7/8) 1.00 0.74 –0.18 (9/6) 0.61 0.67 –0.09 (6/9) 0.61 0.67 0.14 (5/7) 0.77 0.96 0.19

Nuclear Protein
coding (11/11) 1.00 0.65 0.04 (18/4) <0.01** 0.63 0.38** (9/13) 0.52 0.63 –0.02 (9/9) 1.00 0.92 0.02
dN (10/11) 1.00 0.75 –0.25 (14/7) 0.19 0.66 –0.15 (13/8) 0.38 0.67 0.21 (8/9) 1.00 0.97 0.30*
dS (10/11) 1.00 0.65 0.03 (15/6) 0.08 0.67 0.39** (10/11) 1.00 0.58 –0.27 (9/8) 1.00 0.90 –0.13

NOTE.—PSign values and P values for PGLS are two-tailed, the significance is given by * if 0.05. P. 0.01 and ** if P, 0.01. After the FDR procedure, no P values were rejected.
a Fecundity is determined by a proxy, clutch size.

Table 2. Results of the Sign Test on Branch Lengths and PGLS
between Molecular and Mass-Specific Scope of Poison Frogs.

Scope (Mass Specific)

Gene/Codon/Substitution 1/2 PSign l rPGLS

Mitochondrial 12S (12/8) 0.50 0.72 0.43**
16S (11/8) 0.65 0.69 0.31*
tRNA (5/13) 0.10 0.72 –0.17
Protein
coding (11/9) 0.82 0.72 0.41**
dN (11/10) 1.00 0.68 –0.03
dS (9/6) 0.61 0.66 –0.08

Nuclear Protein
coding (19/4) <0.01** 0.61 0.39**
dN (15/6) 0.08 0.65 –0.13
dS (16/5) 0.03* 0.66 0.40**

NOTE.—PSign values and P values for PGLS are two-tailed, the significance is given
by * if 0.05 . P . 0.01 and ** if P , 0.01. After the FDR procedure, no P values
were rejected.
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ultrametric trees were estimatedwith the suggestedMCMC
operator calibrations and 4 runs of 40 million generations
sampled every 1,000 generations; 5) the convergence of
the runs and the optimal burnin was determined using
Tracer v. 1.4 (Rambaut and Drummond 2007); 6) the tree
files were combined using LogCombiner (Drummond and
Rambaut 2007), and approximately 20,000 initial trees
were discarded as burnin; 7) the maximum clade credibil-
ity summary tree was determined with the retained trees
using TreeAnnotator (Drummond and Rambaut 2007);
and 8) the absolute rate of molecular evolution at each
terminal branch (supplementary tables 6 and 7, Supple-
mentary Material online) was obtained from a summary
tree using FigTree v. 1.2.3 (Rambaut 2009).

Phylogenetic correlations between absolute rates of
molecular evolution, dN, dS, and life history traits were
determined using PGLS (Garland and Ives 2000; Rohlf
2001). This comparative method can be summarized as
follows: 1) life history variables (body mass, fecundity,
and rate of molecular evolution) were transformed using
logarithms to improve their distribution (Garland 1992);
2) each trait was tested for phylogenetic signal by estimat-
ing its phylogenetic covariance coefficient Pagel’s k (Pagel
1993) using the ‘‘fitContinuous’’ function of the geiger
R-package v. 1.3 (Harmon et al. 2008); Pagel’s k describes
a tree transformation parameter that has the effect of grad-
ually exclude underlying phylogenetic structure (Pagel
1993, 1999); 3) the significance of k was determined against
a null hypothesis of no phylogenetic signal (i.e., H0: k 5 0)
by contrasting ML scores using a likelihood ratio test
(Harmon et al. 2008); 4) pairwise correlations were deter-
mined using the fit linear model using generalized least
squares or the ‘‘gls’’ function of the nlme R-package v. 3.1
(Pinheiro et al. 2011) under a log-likelihood maximization
(i.e., ML method) and a Pagel’s k correlation structure with
a starting value of k5 1 estimated using ‘‘corPagel’’ function
of the ape R-package v. 2.7 (Paradis et al. 2004); and 5) the
significance of each PGLS correlation coefficient was deter-
mined from the nmle R-package output with a significance
a level set to 0.05 for a two-sided distribution.

Model Estimation of the Phylogenetic Path Analysis
A multivariate approach is necessary to account for the
complex network of relationships between life history traits
and rates of molecular evolution (Bromham 2011). My
choice of path analysis is suitable for this task for the
following reasons. First, path analysis allows the assessment
of direct, indirect, and compound (i.e., mixture of direct
and indirect) casual–covarying relationships among a set
of observed variables (Kline 2005). Second, path analysis
allows testing alternative models of causal relationships
among traits by determining the magnitude of path con-
nections, total variance explained of the dependent varia-
bles, and overall model fit (Scheiner et al. 2000; Grace 2006).
Third, the available methodology for path analysis can eas-
ily be extended from phylogenetically corrected VCV
matrices (Lartillot and Poujol 2011) and independent con-
trasts (Santos and Cannatella 2011).

To perform phylogenetic path models, two types of
input data can be used, namely, a VCV matrix and Pagel’s
k adjusted independent contrasts. The VCV matrix was
estimated using the following approach: 1) the input data
for Coevol v. 1.1 (Lartillot and Poujol 2011) were the life
history trait variables (i.e., body mass, AMR, RMR, and
fecundity; Scope was excluded due to collinearity with
AMR), molecular alignments (i.e., concatenated mitochon-
drial or nuclear protein-coding genes), and user-defined
tree (i.e., RAxML supermatrix topology); 2) to run Coevol,
the age calibrations for the root the tree was set to a mean
of 40.931 and a SD of 5.360 for the age of Dendrobatidae
(Santos et al. 2009); the number of cycles for the MCMC
was set to 4,000; to estimate the covariance matrix R0, the
default option was used that allows each entry along the
diagonal of R0 to be different and derived from the data
(i.e., each using a truncated Jeffrey’s prior); the geodesic
averaging was used to compute branch specific mean
values of the substitution parameter; the dS rates and x
were chosen to be included as molecular evolution varia-
bles in the VCV matrix; and the genetic code was set based
on the input data (i.e., mammal mitochondrial or univer-
sal); 3) two separate chains were run to ensure convergence
from independent starting points; 4) chain convergence
and optimal burnin were determined using the tracecomp
module of PhyloBayes v. 3.3 (Lartillot et al. 2009); and 5) the
final VCV matrix and ancestral reconstructions were deter-
mined from retained samples using the readcoevol module
of Coevol v. 1.1 (Lartillot and Poujol 2011). In complimen-
tary set of runs (supplementary table 8, Supplementary
Material online), the covariance matrix R0 was determined
using the R05jIM parametrization, where IM is the identity
matrix of sizeM whereM5 K (substitution parameters)þ
L (life history traits), and j is prior mean variance for each
component of the multivariate process (Lartillot and
Poujol 2011). I used j prior equal to 1.0 to encompass
the range of scales observed (i.e., main diagonal of the
top matrices on table 4) for the rate of change of the sub-
stitution and life history traits (Lartillot and Poujol 2011).
The resulting VCVs using the default parametrization (i.e.,
truncated Jeffrey’s priors) and j 5 1.0 were input for the
phylogenetic path analyses.

The estimation of the Pagel’s k adjusted independent
contrasts (k-PICs) can be summarized in the following
steps: 1) the input data were life history variables (i.e., body
mass, AMR, RMR, and fecundity) and absolute rates traits
transformed using logarithms to improve their distribution
(Garland 1992); 2) each trait was tested for phylogenetic
signal under a RAxML supermatrix topology, and its spe-
cific Pagel’s k was determined using the ‘‘fitContinuous’’
function of the geiger R-package v. 1.3 (Harmon et al.
2008); 3) the branch lengths of the RAxML supermatrix tree
were transformed in accordance to each trait k (table 3);
4) k-PICs were estimated using the transformed tree with
the ‘‘pic’’ function of the ape R-package v. 2.7 (Paradis et al.
2004); and 5) the presence of multivariate k-PIC outliers
was determined by calculating Mahalanobis distances
(Tabachnick and Fidell 2007), and no cases were found.
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The k-PICs were used as input data for the phylogenetic
path analyses.

Four path models were estimated using VCVs and PICs.
For the VCV-based models, life history traits were defined
as predictors (i.e., exogenous variables) and mitochondrial
or nuclear dS rates and x as dependents (i.e., endogenous
variables). Likewise, for the PICs-based models, life history
traits were used as predictors of mitochondrial and nuclear
absolute rates. Path model estimation can be summarized
as follows: 1) a full initial (i.e., just-identified) model with all
variables correlating to each other was estimated using
MPlus v. 6.11 (Muthén andMuthén 2011) with VCV or PICs
as input, ML as estimator with 2,000 iterations, including
modification indices, and estimating standardized path
coefficients; for the PICs, an extra step was necessary such
that all variable intercepts were constrained to 0 (i.e., forced
through the origin) as required for PICs statistical interpre-
tation (Felsenstein 1985; Garland et al. 1992); 2) the initial
output was explored and all nonsignificant path coeffi-
cients at an a 5 0.05 were identified; these initial path
models are full multiple phylogenetic regression models,
and their results were also reported; 3) a set of alternative
path models were tested that constrained all or a combina-
tion of the nonsignificant paths (i.e., overidentified mod-
els); 4) the best-fitting model was selected based on

several criteria (Santos and Cannatella 2011), namely, non-
significant v2 supporting that the implied VCVmatrix R̂0 is
not statistically different from the observed VCVmatrixR0,
overall parsimony (i.e., the model that has the less possible
number of parameters to estimate without rejecting R0),
and good model fit indices including Bentler’s comparative
fit index (CFI, Bentler 1990), Tucker–Lewis index (TLI,
Tucker and Lewis 1973), root mean square error of approx-
imation (RMSEA, Browne and Cudeck 1993), and standard-
ized root mean square residual (SRMR, Bentler 1995). The
interpretation of model fit indices follows standard recom-
mendations of model optimality including CFI . 0.95, TLI
. 0.95, RMSEA, 0.05, and SRMR, 0.10 (Hu and Bentler
1999). Path models based on the VCVs with the j 5 1.0
parametrization were similar to those based using a trun-
cated Jeffrey’s prior, and they are presented in the supple-
mentary fig. 1 and table 8 (Supplementary Material online).

Results

Variability in Life History Traits and Molecular
Evolution Rates
The rates of molecular evolution and the life history traits
showed a significant variation across the 54 species studied
(fig. 1 and supplementary tables 1 and 2, Supplementary

Table 3. Phylogenetic Path Analyses of Life History Variables with Ribosomal, tRNAs, and Protein-Coding Genes.

Initial Models (just-identified or saturated model)

12SrDNA, 16SrDNA, and tRNAs Combined Protein-Coding Genes

Path
Coefficients RMR AMR Fecundity 12S 16S tRNAV–L–M ltrait

Path
Coefficients RMR AMR Fecundity Mitochondrial Nuclear ltrait

Mass 20.41 20.40 0.37 0.08 0.33 0.05 0.63 Mass 20.41 20.40 0.37 0.38 0.15 0.63
RMR — 0.42 20.17 20.21 0.16 20.14 0.64 RMR — 0.42 20.17 0.13 20.14 0.64
AMR — — 20.10 0.53 0.39 20.09 0.68 AMR — — 20.10 0.51 0.51 0.68
Fecundity — — — 20.01 20.03 20.19 0.92 Fecundity — — — 0.08 20.06 0.92
12S — — — — 0.48 0.45 0.00 Mitochondrial — — — — 0.15 0.00
16S — — — — — 0.37 0.00 Nuclear — — — — — 0.00
tRNAV–L–M — — — — — — 0.00

P values RMR AMR Fecundity 12S 16S tRNAV–L–M R2I P values RMR AMR Fecundity Mitochondrial Nuclear R2I

Mass <0.01 <0.01 <0.01 0.59 0.03 0.76 — Mass <0.01 <0.01 <0.01 <0.01 0.35 —
RMR — <0.01 0.23 0.14 0.29 0.39 — RMR — <0.01 0.23 0.33 0.33 —
AMR — — 0.47 <0.01 <0.01 0.57 — AMR — — 0.47 <0.01 <0.01 —
Fecundity — — — >0.99 0.86 0.21 — Fecundity — — — 0.53 0.64 —
12S — — — — <0.01 <0.01 0.22 Mitochondrial — — — — 0.28 0.30
16S — — — — — <0.01 0.19 Nuclear — — — — — 0.20
tRNAV–L–M 0.07

Final Models (constrained, path coefficients are in fig. 2)

12SrDNA, 16SrDNA, and tRNAs (fig. 2A) Combined Protein-Coding Genes (fig. 2B)

P valuesa RMR AMR Fecundity 12S 16S tRNAV–L–M P valuesa RMR AMR Fecundity Mitochondrial Nuclear

Mass <0.01 <0.01 0.01 * * * Mass <0.01 <0.01 0.01 <0.01 *
RMR — <0.01 * * * * RMR — <0.01 * * *
AMR — — * <0.01 <0.01 * AMR — — * <0.01 <0.01
Fecundity — — — * * * Fecundity — — — * *
12S — — — — <0.01 <0.01 Mitochondrial — — — — *
16S — — — — — <0.01 Nuclear — — — — —

NOTE.—Phylogenetic path analyses were performed using PICs for each trait estimated under trait specific Pagel’s lambda (k) tree transformation parameter. R2I is the
variance explained by the dependent variables in the initial model.
a P values of path coefficients of the final path model. Asterisk indicates that the path was constrained to be zero in the final model.
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Material online). Moreover, different rates of molecular
substitution were evidenced between nuclear and mito-
chondrial loci. The mitochondrial genes evolved approxi-
mately 10 times faster than the nuclear loci, but the
substitution rates were comparable to those of other ecto-
therms (Hoeeg et al. 2004; Townsend et al. 2008). Similarly,
the codon positions and the synonymous sites of the mi-
tochondrial genes evolved faster (i.e., ;16 times faster)
than those corresponding to the nuclear loci. Estimates
of dS and x for mitochondrial and nuclear concatenated
matrices also showed significant variation across the phy-
logeny. As expected, tRNAs, second codon positions, and
dN substitutions showed the slowest rates of molecular
evolution among the analyzed gene sequences.

Regarding life history traits, a significant variation was
observed across the poison frog phylogeny (fig. 1 and
supplementary tables 1 and 2, Supplementary Material
online). Body mass showed a 30-fold difference between
the smallest (;0.2 g) versus the largest (;6.0 g) species.
Likewise, clutch size had a significant variation from line-
ages with few eggs (e.g., Dendrobates with 2 to 4 eggs
per clutch) to several lineages with 2 to 33 times larger
clutch sizes (e.g., Hyloxalus and Allobateswith 8 and 66 eggs
per clutch, respectively). Similarly, the metabolic parame-
ters also showed a significant variation among lineages. For
instance, RMRs had a significant variation across the poison
frog phylogeny with a 6-fold difference between the lowest
versus the highest values. Similarly, AMRs had a 5-fold
difference between the lowest versus the highest values.
However, AMRs had an uneven distribution across the
phylogeny because some clades included the majority of
the 27 species with high AMR (i.e., species with mass-
specific AMR values above the mean of all estimates, in
fig. 1). Specifically, Clade D had approximately 56% or
15/27 species with high AMR, Clade C had approximately
26% or 7/27, and Clade B had approximately 14% or 4/27,
whereas Clade A had only approximately 4% or 1/27
species with high AMR. Likewise, ancestral reconstructions
showed a rapid increase of AMR in Clade D in comparison
to the rest of the family. Measurements based on Scope
were similar to those based on AMR (supplementary tables
1 and 2, Supplementary Material online). Overall, the life
history data showed a significant variation across the
poison frogs with Clade D concentrating most of the high
AMRs species.

Evidence of Higher Rates of Molecular Evolution
Using Single Predictors
The results of the RRT and PGLS based on absolute rates
(tables 1 and 2) suggest increases in the rates of molecular
evolution in association with specific life history traits. Both
RRT and PGLS results supported that AMR and Scope pre-
dict a significant (P , 0.05) positive association with the
rates of molecular evolution of nuclear loci (i.e., substitu-
tions per site and absolute rates). Likewise, RRT and PGLS
also supported a significant (P, 0.05) positive association
between Scope (i.e., adjusted measurement of AMR) with
dS substitutions in nuclear genes. Only the PGLS analyses

found a significant positive association (P , 0.05) of AMR
and Scope with absolute rates of both RNA-coding and
coding mitochondrial genes. In addition, the PGLS analyses
also found a significant positive association (P , 0.05) be-
tween fecundity and dN substitutions in nuclear genes. In
contrast, no evidence (P. 0.05) was found of associations
between molecular evolution and RMR and body mass.
Therefore, AMR and Scope are the only consistent single
predictors of rates of molecular evolution in poison frogs.

Interpretation of the Phylogenetic Path Analyses on
Rates of Molecular Evolution
Path analysis represents a multivariate hypothesis of causal
and covariant effects among a set of variables. The initial
estimates are just-identified models in which all VCVs are
known, and they have zero degrees of freedom (i.e., the
number of free parameters is equal to the number of
known values). The tops of tables 3 and 4 provide just-
identified model parameters including path coefficients
(i.e., standardized regression coefficients), their significance,
and total explained variance by the just-identified model
(R2I ) about the dependent variables. The interpretation
of the just-identified model is a full multiple regression
model, but more parsimonious models exist with fewer pa-
rameters to be estimated (i.e., over-identified models with
degree of freedom . 0).

The final model path diagrams are provided in figure
2A–D, and the significance of each path coefficient is pro-
vided on tables 3 and 4. The elements of the path diagram
and their interpretation are similar to those of structural
equation models (Santos and Cannatella 2011), and they
are summarized as follows. All the variables that were di-
rectly measured are represented within boxes. Error varia-
bles, indicated by E, represent unexplained variance
derived from the combined effects of unseen covariates
or measurement error. In all the models of figure 2, the
dependent variables have significant (P , 0.05) error varia-
bles indicated by E*. These results suggest that a significant
fraction of the variance of the rates of molecular evolution
might be explained by unaccounted life history covariates
(e.g., longevity or generation time variables) excluding
measurement error.

Paths are indicated by connecting arrows, and their
magnitude is presented by standardized regression coeffi-
cients (i.e., values within oval shapes). A direct path be-
tween two variables represents a direct effect that
cannot be explained through any other variable in a model.
In the standard terminology of path analysis, direct effects
should be understood as proposals of direct causal relation-
ship between variables (i.e., independent on dependent)
given all the observed variables included in a model (Alwin
and Hauser 1975; Kline 2005; Grace 2006). Direct effects are
indicated by single-headed arrows connecting one predic-
tor (independent or exogenous) with a dependent (endog-
enous) variable (e.g., fig. 2B: AMR / nuclear with
a magnitude of 0.40). Covariances are indicated by
double-headed arrows connecting two variables (e.g., fig.
2B: mass4 AMRwith a magnitude of�0.38). The absence
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of connecting paths between variables implies no hypoth-
esized direct effect.

Indirect effects between two variables are inferred by the
presence of intermediate variables along the flow of a path.
For example in figure 2B, body mass has an indirect effect
on absolute rates of nuclear genes through two path flows.
The first path is through the relationship of mass4 AMR
/ nuclear with an indirect effect equal to the mathemat-
ical product of the coefficients along the path flow (i.e.,
�0.38 � 0.40 5 �0.152). The second path is through
the relationship of mass4 RMR4 AMR/ nuclear with
indirect effect equal to�0.37� 0.42� 0.405�0.062. The
total effect is the sum of all direct and indirect effects
between these two variables. In this case, the total effect
of body mass on absolute rates of nuclear genes is
�0.152 þ (�0.062) 5 �0.214.

Each path coefficient also provides an idea of the
consistency (i.e., reliability) of the predictor to estimate
the dependent variable. The reliability is estimated by

the square value of the path coefficient (e.g., the reliability
of AMR for predicting the absolute rates of nuclear genes is
0.40 � 0.40 5 0.16). Values of reliability above .0.50 are
considered to support standalone predictors (Santos and
Cannatella 2011). The total variance explained by the entire
model about each endogenous variable is expressed by its
R2 (e.g., 0.16 for the absolute rates of nuclear genes). The
overall usefulness of the model should be evaluated by
a combination of its v2 magnitude and significance, model
fit indices (i.e., CFI, RMSEA, TLI, and SRMR), and total
variance explained (R2) of each endogenous variable.

Evidence of Higher Rates of Molecular Evolution
Using Path Analysis
Several models were used to test the association between
life history predictors and absolute rates, dS rates, and
x of mitochondrial and nuclear genes. The final models
(fig. 2A–D and bottom of tables 3 and 4) were those with
the best overall fit to the observed data. Figure 2A shows

Table 4. Phylogenetic Corrected Covariances Using Truncated Jeffrey’s Prior, Correlations, Posterior Probabilities, and P Values of Path
Coefficients of Life History Variables with Nuclear and Mitochondrial Protein-Coding Genes Using a Multivariate Brownian Process and (dS,
x 5 dN/dS) Parametrization to Estimate Covariances.

Initial Models (just-identified or saturated model)

Mitochondrial Protein-Coding Genes Nuclear Protein-Coding Genes

VCV Mass RMR AMR Fecundity dS v VCV Mass RMR AMR Fecundity dS v

Mass 1.43 20.24 20.15 0.34 20.02 0.52 Mass 1.49 20.23 20.19 0.32 20.12 20.12
RMR — 0.29 0.09 20.08 0.01 20.04 RMR — 0.37 0.11 20.11 0.07 0.03
AMR — — 0.27 20.05 0.06 0.22 AMR — — 0.30 0.01 0.31 0.09
Fecundity — — — 0.64 20.01 0.09 Fecundity — — — 0.77 0.19 20.11
dS — — — — 0.14 0.05 dS — — — — 0.66 0.10
v — — — — — 0.84 v — — — — — 0.26

Correlation Mass RMR AMR Fecundity dS v Correlation Mass RMR AMR Fecundity dS v

Mass — 20.36 20.24 0.35 20.05 0.46 Mass — 20.31 20.28 0.30 20.12 20.19
RMR — — 0.31 20.19 0.07 20.07 RMR — — 0.33 20.20 0.13 0.10
AMR — — — 20.11 0.30 0.46 AMR — — — 0.00 0.70 0.32
Fecundity — — — — 20.03 0.12 Fecundity — — — — 0.26 20.25
dS — — — — — 0.16 dS — — — — — 0.23
R2I — — — — 0.10 0.58 R2I — — — — 0.56 0.18

Posterior
Probabilitya Mass RMR AMR Fecundity dS v

Posterior
Probabilitya Mass RMR AMR Fecundity dS v

Mass — <0.01 0.05 0.99 0.41 0.97 Mass — 0.01 0.02 0.99 0.31 0.29
RMR — — 0.99 0.08 0.63 0.38 RMR — — 0.99 0.08 0.74 0.63
AMR — — — 0.23 0.91 0.98 AMR — — — 0.51 >0.99 0.85
Fecundity — — — — 0.44 0.70 Fecundity — — — — 0.92 0.21
dS — — — — — 0.71 dS — — — — — 0.76

Final Models (constrained, path coefficients are in fig. 2)

Mitochondrial Protein-Coding Genes (fig. 2C) Nuclear Protein-Coding Genes (fig. 2D)

P valuesb Mass RMR AMR Fecundity dS v P valuesb Mass RMR AMR Fecundity dS v

Mass — 0.03 * 0.01 * <0.01 Mass — 0.04 0.02 0.03 * *
RMR — — 0.04 * * * RMR — — <0.01 * * *
AMR — — — * 0.02 <0.01 AMR — — — * <0.01 <0.01
Fecundity — — — — * * Fecundity — — — — <0.01 *
dS — — — — — * dS — — — — — *

NOTE.—R2I is the variance explained by the dependent variables in the initial model.
a Posterior probabilities (PP) of the covariance sign: PP , 0.025 (significant negative) and PP . 0.975 (significant positive).
b P values of path coefficients of the final path model. Asterisk indicates paths that were constrained to be zero in the final model.
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the model between life history traits and RNA-coding mi-
tochondrial genes. AMR had a direct effect on the abso-
lute rates of 12S and 16S rRNAs, whereas body mass, RMR,
and fecundity had indirect effects through AMR. None of
the life history variables analyzed has a direct path to
tRNAs. Although the path model fit the observed data,
the explained variances of the absolute rates of 12S
and 16S rDNA were low (i.e., 0.10 , R2 , 0.30). Figure
2B shows the model between life history traits on absolute
rates of concatenated mitochondrial and nuclear protein-
coding genes. AMR had a direct effect on absolute rates of
both mitochondrial and nuclear loci, whereas body mass
had a direct effect only on the rate of mitochondrial
genes. RMR and fecundity had an indirect effect on abso-
lute rates through AMR and body mass. Although the

path model fit the observed data, the explained variances
of mitochondrial and nuclear loci were low (i.e., 0.10, R2

, 0.30). Figure 2C shows the model between life history
traits and mitochondrial dS (dSMito) rate and x (xMito).
AMR had a direct effect on both dSMito rate and xMito,
whereas body mass only had a direct effect on xMito.
RMR and fecundity had indirect effects on both depend-
ents through AMR and body mass. The path model fit the
observed data, and the explained variance of xMito was
acceptable (i.e., 0.30 , R2 , 0.75); in contrast, the ex-
plained variance of dSMito was low (i.e., 0.10 , R2 ,

0.30). Finally, figure 2D shows the model between life his-
tory traits and nuclear dS (dSnuclear) rate and x (xnuclear).
AMR had a direct effect on both dSnuclear rate andxnuclear,
whereas fecundity only had a direct effect on dSnuclear.

FIG. 2. Phylogenetic path analyses representing network models of life history traits, absolute rates, x (dN/dS), and dS rates in poison frogs.
(A) Model of life history traits (predictors-exogenous variables) as codependents on absolute rates of RNA-coding mitochondrial genes
(dependents-endogenous variables); (B) model of life history traits as codependents on absolute rates of concatenated protein-coding
mitochondrial and nuclear genes; two models of life history traits as codependents on (C) x and dS rate of concatenated protein-coding
mitochondrial genes and on (D) x and dS rate of concatenated protein-coding nuclear genes. Connecting lines are path coefficients of causal-
direct association (single-headed arrows) and correlations/covariances (double-headed arrows). The absence of connecting lines between
variables implies no hypothesized direct effect. Standard path coefficients between variables are contained within ellipses. Direct effects are
represented by connecting arrows between variables (e.g., AMR / 12S rRNA). Indirect effects are compound pathways that connect two
variables through an intermediate variable (e.g., body mass has an indirect effect on dSnuclear through three ways: mass 4 RMR 4 AMR /
dSnuclear, mass4 AMR/ dSnuclear, and mass4 fecundity/ dSnuclear). Error variables of endogenous variables represent measurement error
and unaccounted effects by unmeasured agents (e.g., life span and generation time). All error variables are significant (P , 0.05) and are
indicated by E*. The total variance of the endogenous variables explained by the model is summarized in the R2. Path model statistics include
v2 goodness of fit, Bentler’s CFI . 0.95 5 good fit, TLI . 0.95 5 good fit, RMSEA , 0.05 5 good fit, and SRMR , 0.10 5 adequate fit.
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Body mass and RMR had indirect effects on both depend-
ents through AMR and fecundity. The path model fit the
observed data, and the explained variance of xnuclear was
low (i.e., 0.10, R2 , 0.30); in contrast, the explained var-
iance of dSnuclear was acceptable (i.e., 0.30 , R2 , 0.75).
Therefore, AMR was the only consistent direct predictor
of rates of molecular evolution in poison frogs for both
mitochondrial and nuclear loci. Body mass and fecundity
were weaker direct predictors of rates of molecular evo-
lution, and they were genome specific (i.e., body mass for
mitochondrial loci and fecundity for nuclear loci). RMR
was an indirect predictor of rates of molecular evolution
through AMR, fecundity, or body mass.

Discussion
The balance between mutation rate, DNA repair, and
replication errors mostly determines the dynamics of
molecular evolution (Bromham 2009). A mutation rate
is the speed at which sequence changes accumulate due
to biochemical damage coupled with inefficient repair,
DNA synthesis mistakes, or directed hypermutability
(Graur and Li 2000; Pal et al. 2006; Bromham 2009).
However, life history traits, such as metabolic rates, might
influence the pace of molecular evolution by linking the
frequency of oxidative damage to the likelihood of inher-
itance of molecular change (Martin and Palumbi 1993). My
results support that mass-specific AMR is a consistent pre-
dictor of rates of molecular evolution of both nuclear and
mitochondrial loci in poison frogs. I explored potential
AMR correlates (i.e., body mass, fecundity, and RMR),
but none seems to explain the AMR strong positive
relationship with the rates of molecular evolution. Thus,
several factors synergistically influence the rates of molec-
ular evolution, but AMR and, to a lesser extent, fecundity
and body mass are relevant for predicting the rates of
molecular evolution in poison frogs.

The metabolic rate hypothesis predicts that species with
low RMRs are likely to have slower rates of molecular evo-
lution, especially in ectotherms (Martin et al. 1992; Martin
1999). However, phylogenetic comparative analyses on
large ectotherm lineages (e.g., Arthropoda, Chelonia, and
Mollusca) found no support for this association (Seddon
et al. 1998; Caccone et al. 2004; Lanfear et al. 2007). My
results were not different from previous reports and failed
to support a significant direct association between RMR
and the rates of molecular evolution. However, my data
support an indirect association between RMR with molec-
ular evolution through AMR, body mass, or fecundity. The
implications of this indirect effect of RMR suggest that life
history should be seen as a network of traits linked to the
rate of molecular evolution. Moreover, few traits (e.g., AMR)
are supported as dominant predictors, whereas others
(e.g., fecundity and body mass) might exert a minor effect.

The AMR results showed a direct and positive associa-
tion with the rates of molecular evolution as a single
predictor and when used in path analyses. Several reasons
support this association: 1) AMR reflects the athletic prow-

ess or the upper bound of physical activity supported by
oxidative respiration; 2) a high AMR is associated with
target oxygen supply to muscles, which is linked to ROS
production during or after aerobic exercise; and 3) AMRs
are species specific; they cannot be approximated by body
mass alone and might represent physiological adaptations
to higher endurance (Bishop 1999; Weibel et al. 2004). Even
though my results do not imply causation, they suggest
that a strong positive association exists between high
AMRs and faster molecular evolution in poison frogs. How-
ever, the AMR and rates of molecular evolution in poison
frogs might be the result of synergistic associations with
unmeasured life history traits.

Two possible candidates are longevity and generation
time. Longevity has been shown to relate longer life spans
with slower rates of molecular evolution (Nabholz et al.
2008). Species with long lives and late reproduction are ex-
pected to have effective or overactive DNA repair mecha-
nisms, which provide a better management of free radicals
(Galtier et al. 2009). Not surprisingly, longevity has been
shown to negatively correlate with ROS production in both
endotherms and ectotherms (Buttemer et al. 2010). Body
mass positively correlates with lifespan, and it can be used
as a proxy for testing the longevity hypothesis (Speakman
2005). Regarding generation time as predictor, reproduc-
tion tempo is expected to be inversely associated with sub-
stitution rates in germ line DNA due the accumulation of
replication errors per unit time (Ohta 1993; Smith and
Donoghue 2008; Thomas et al. 2010). Thus, higher rates
of molecular evolution are expected to be associated with
shorter generation times (Bromham et al. 1996). However,
estimates of generation time are difficult to determine, and
proxies such as developmental time, age at sexual maturity,
or time to first sexual reproduction are used (Thomas et al.
2010; Bromham 2011).

In the case of poison frogs, the information about life
spans is scarce, anecdotal, and mostly based on captive-
risen individuals (n 5 14, �X 5 5.7 ± 2.6 years, range 5

3–11.5 years; see list in supplementary table 2, Supplemen-
tary Material online). From these data, only four species
(i.e., Dendrobates auratus, D. histrionicus, D. leucomelas,
and D. pumilio) have an acceptable level of confidence
in the AnAge database (de Magalhaes and Costa 2009)
to be reliable for comparative analyses. In addition, all avail-
able poison frog life spans might be biased from the in-
creased life expectancy of captive-risen individuals
(Bronikowski and Promisiow 2005). In spite of the limita-
tions of longevity data, I tested if life span was associated
with body mass, mass-specific AMR, and the rates of mo-
lecular evolution using all available accounts (i.e., n 5 14).
I found a significant ordinary least squares (OLS) correla-
tion of 0.82 (P, 0.01) between lifespan and body mass, but
a nonsignificant OLS correlation of 0.11 (P 5 0.71) with
mass-specific AMR. All OLS correlations with the rates
of molecular evolution were nonsignificant (P . 0.05).
In addition, I performed PGLS analyses, and all estimated
ks of the correlations were negative, which made the cor-
relations unreliable and suggest a low sample size.
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Therefore, OLS correlations suggest that longevity, by its
body mass proxy, might have a direct effect on rates of mo-
lecular evolution of mitochondrial protein-coding genes
(fig. 2B and C). However, longevity is not associated with
mass-specific AMR and is unable to explain the strong pos-
itive association between mass-specific AMR with the rates
of molecular evolution. More reliable data on lifespans
from natural populations are necessary to evaluate the lon-
gevity hypothesis of molecular evolution in poison frogs.

The age of sexual maturity is the best-known proxy of
generation time in poison frogs (others are developmental
time or time to first sexual reproduction, see supplemen-
tary table 2, Supplementary Material online). However,
the information derives mostly from aposematic species
of Clade D (n 5 19, �X 5 10.5 ± 2.5 months, range 5

5–14 months; see list on supplementary table 2, Supple-
mentary Material online). In spite of this drawback, I also
tested if the age of sexual maturity is associated with body
mass, mass-specific AMR, and the rates of molecular
evolution. I found a nonsignificant OLS correlation of 0.03
(P 5 0.91) between the age of sexual maturity and body
mass. Likewise, I found a nonsignificant OLS correlation of
0.24 (P 5 0.32) between the age of sexual maturity and
mass-specific AMR. All OLS correlations with the rates of
molecular evolution were also nonsignificant (P . 0.05).
In addition, I performed PGLS analyses, and all estimated
ks of the correlations were negative, which made the corre-
lations unreliable. Therefore, the age of sexual maturity might
not explain the associations between AMR and molecular
evolution. However, I cannot rule out that generation time
has a direct effect on rates of molecular evolution in poison
frogs.

Other life history traits might also explain the associa-
tion between AMR and the rates of molecular evolution,
including abiotic correlates and diversification rates. In
the first case, variations in the rates of molecular evolution
might be an expression of geographical distribution and
environmental energy (Rohde 1992). Poison frogs are en-
demic to the Neotropics with significant altitudinal varia-
tion (i.e., from sea level up to Andean páramos at
approximately 4,000 m above sea level); thus, the levels
of solar radiation and environmental temperature might
be important factors influencing poison frog rates of mo-
lecular evolution. To evaluate this hypothesis, poison frog
lineages with distributional ranges.1,500 m.a.s.l. (e.g., spe-
cies of Clade B along the Andes, such as Hyloxalus) and
,600 m.a.s.l. (e.g., most of Clade D) should be tested
for faster rates of molecular evolution. Interestingly, many
lineages with high AMRs (e.g., Dendrobates from Clade D)
are distributed in tropical rain forests (,250 m.a.s.l. with
a mean warm temperature of;25 �C); hence, environmen-
tal temperature might also play a role in the increase in the
rate of evolution.

Regarding the diversification rates, some groups within
the poison frogs have undergone extensive radiations since
the Upper Miocene (i.e., ,10 Ma) (Santos et al. 2009). For
example, it could be tested if the evolution rates have in-
creased in recently diversified clades. Two specious clades

of interest are the Ameerega (;11% or 31/285 of all the
dendrobatid species with a crown age ;9 Ma) and the
D. ventrimaculatus complex (;7.7% or 22/285 of all the
species with a crown age ;7 Ma). Interestingly, both
groups also concentrate many species with high AMRs,
which suggests that metabolic rates might also contribute
to diversification rates. More molecular data, in terms of
molecular markers and taxon sampling, will be necessary
to address if an association exists between AMRs, rates of
diversification, and molecular evolution in poison frogs.

Aposematism is associated with AMR, RMR, Scope, and
body mass in poison frogs (Santos and Cannatella 2011). As
a complex phenotype in dendrobatids, aposematism is de-
fined by the simultaneous presence of conspicuous color-
ation and chemical defense as skin alkaloids (Santos et al.
2003). Aposematic dendrobatids are highly polymorphic in
terms of coloration, and conspicuousness is strongly asso-
ciated with intraspecific (e.g., mate choice) and interspe-
cific (e.g., Batesian and Müllerian mimicry) interactions
(Summers et al. 1999; Symula et al. 2001; Darst et al.
2006). In addition to be chemically defended, poison frogs
have become resistant to their own alkaloids by directional
selection on key protein sites (Daly et al. 1980; Wang and
Wang, 1998). For example, pumiliotoxins are targeted to
muscular ion channels (e.g., Ca2þ and Naþ) causing cardi-
otoxic and myotoxic detrimental effects (Daly 1998; Daly
et al. 1999). The physiological cost of resistance to pumi-
liotoxins is unknown in poison frogs, but it might be hy-
pothesized to be higher (e.g., increased RMR or AMR) than
in the susceptible nondefended species. However, the
genes used in the present study (i.e., mitochondrial and nu-
clear) are not related to aposematism and are expected to
be under strong negative selection. Further analyses at the
genomic level might determine if aposematic genes related
to high AMR are undergoing positive selection and have
faster rates of molecular evolution.

Aerobic Exercise Link: AMR, Oxygen Supply, ROS
Production, and Rates of Molecular Evolution
AMR is determined by the maximal oxygen consumption
(V̂O2max), where mitochondrial efficiency is near its highest
capacity to consume oxygen (Gatten et al. 1992; Wagner
2008). Variations in AMRs primarily derive from specific
adaptations to endure physical activity (Wagner 2008)
and less likely from mitochondrial efficiency (Roca et al.
1989; Gonzalez et al. 2006). Specifically, the evolution of
AMR should be mostly reflected in adaptations for sys-
temic oxygen transportation (Weibel 1984; Hillman et al.
2009) such as lung capacity for air ventilation, oxygen dif-
fusion from alveolar gas to transporting proteins in the
blood, targeted blood flow to active muscles during exer-
cise by the cardiovascular system, and oxygen diffusion to
mitochondria to achieve their near V̂O2max capacity.

AMR and athletic prowess are related by how fast oxy-
gen is supplied by the cardiopulmonary system to skeletal
muscles (Bishop 1999) and the total volume of mitochon-
dria (Weibel and Hoppeler 2005). For example, well-trained
individuals (e.g., human athletes and active endotherm
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predators) have a higher aerobic capacity reflected by an
efficient oxygen supply to muscles during activity, which
rises V̂O2max to near the asymptotic maximum V̂O2

seen
in isolated mitochondria (Gonzalez et al. 2006; Wagner
2008). The increased oxygen intake during physical activity
promotes the production of free radicals, such as ROS, in
several orders of magnitude (Tonkonogi et al. 2000; Di Meo
and Venditti 2001; Powers and Jackson 2008). ROS excess
production is known to be associated with bursts of oxida-
tive stress, which then is coupled with senescence and higher
mutation rates (Galtier et al. 2009). Therefore, higher AMRs
and faster rates of molecular evolution should be positively
correlated if exercise-related ROS and oxidative stress are not
managed with efficient antioxidant enzymes (e.g., hyperac-
tive superoxide dismutase).

The magnitude of the association between AMR and
substitution rates varied among the analyzed loci. For
instance, in the mitochondrial genome, AMR was positively
associated with absolute rates of RNA-coding mitochon-
drial genes (i.e., 12S and 16S rDNAs), which might reflect
higher substitution rates in fast evolving sequence motifs
(e.g., RNA loops) (Kjer 1995; Hickson et al. 1996). Likewise,
AMR was positively associated with absolute rates of
protein-coding genes, which suggest an increase on muta-
tion rates due to oxidative damage and a weaker effect of
selection. In contrast, AMR was not associated with the
rates of tRNAs, which is unexpected if higher AMR causes
a general increase in mutation rates. This discrepancy could
be explained by the fact that the three tRNAs used do not
have enough information (i.e., tRNAs V–L–M has 221 bp vs.
;5,000 bp of the nuclear loci). In addition, mitochondrial
tRNAs have their stem–loop structure conserved (Pesole
et al. 1999), and entire mitochondrial genomes might be
necessary to determine if AMRs are associated with rates
of molecular evolution of tRNAs. Overall, substitution rates
in mitochondria are dependent on the quantity of ROS
produced during physical exercise, the DNA repair effi-
ciency, and the strength of the purifying selection upon
the analyzed loci (Yakes and VanHouten 1997; Hirsh
and Fraser 2001; Meiklejohn et al. 2007).

The interpretation of the direct relationship between
AMR and molecular evolution in nuclear genes is challeng-
ing. Based on our current knowledge, mitochondria pro-
duce free radicals that represent 1–4% of all the oxygen
respired by air-breathing organisms (Yu 2005). The ROS
produced by mitochondria represent 80–90% of all super-
oxides produced, but the remaining 10–20% originates
from several sources widely distributed throughout the cell
(Balaban et al. 2005). In mammals, mitochondrial ROS
appears to have a negligible contribution to the oxidative
damage observed in nuclear DNA (Hoffmann et al. 2004;
Michaelson et al. 2010). Moreover, a high aerobic metab-
olism appears to be independent or drives a slightly negative
effect on DNA mutation rates in mice and rats (Tweedie
et al. 2011). However, constant oxidative DNA damage
has been evidenced regardless of the ROS production by
mitochondria (Hoffmann et al. 2004).

In spite of the mitochondrial ROS constraint, cytosolic
endogenous ROS causes nuclear oxidative DNA damage
and genetic instability (Chen et al. 1995). Intracellular non-
mitochondrial ROS might originate from several sources
(e.g., membrane-associated oxidases, lipoxygenases, and
cythochromes) (Yu 2005), including enzymes related to
muscle contraction (Michaelson et al. 2010). Likewise,
extracellular agents of oxidative stress might increase the
ROS production such as light radiation (Hoffmann et al.
2004), hypoxia (Chandel et al. 1998), hyperoxia (Fehrenbach
and Northoff 2001), and toxins (Azqueta et al. 2009). Ad-
ditional evidence suggests that different levels of ROS
damage exist between active tissues (e.g., type I skeletal
muscles) and more passive cell types within a single
organism (Amara et al. 2007; Powers et al. 2011). Overall,
high AMR and faster rates of molecular evolution are
possible on remote and less metabolically active germ line
cells by nonmitochondrial ROS. Much experimental infor-
mation needs to be collected on ROS nonmitochondrial
sources and extracellular inductors of DNA damage.

One significant parameter related to AMR is the effi-
ciency of oxygen supply to active tissues by the cardiovas-
cular system (Bishop 1999; Di Meo and Venditti 2001;
Fehrenbach and Northoff 2001). During physical activity,
such as active predation, the supply of oxygen is targeted
to skeletal muscles and decreases towards less active tissues
(e.g., liver and germ line cells) by reduced blood flow
(Di Meo and Venditti 2001; Bickler and Buck 2007). By as-
suming that mitochondrial aerobic respiration is limited by
the supply of oxygen, less active tissues, such as germ line
cells, might experience periodic reductions of oxygen sup-
ply (i.e., partial ischemia or hypoxia) related to aerobic ex-
ercise. Alternatively, after the exercise has ended, the
resting state is preceded by an increase in blood flow
(i.e., reoxygenation) by the cardiovascular system to the is-
chemic tissues, which could potentiate the production of
ROS in germ cells by hyperoxia (Bickler and Buck 2007).
Therefore, as a byproduct of exercise hyperoxia or hypoxia,
high AMR species might experience frequent peaks of ROS
production that increases DNA damage and mutation in
less active tissues such as germ cells.

AMR reflects the species-specific capacity to perform
aerobic exercise. Interestingly, at the intraspecific level,
exercise-induced hyperoxia or hypoxia has been evidenced
to induce oxidative stress, senescence, and DNA damage
across taxa including flies (Agarwal and Sohal 1994; Rascon
and Harrison 2010), fish (Lushchak et al. 2005; Bickler and
Buck 2007), amphibians (Bickler and Buck 2007), reptiles
(Bickler and Buck 2007), and endotherms (Vonzglinicki
et al. 1995; Moller et al. 2001). These evidences suggest that
AMR positively correlates with ROS production during
exercise across ectotherm and endotherm lineages. Further-
more, AMR, as a proxy of ROS production, might positively
correlate with DNA damage and rates of molecular evolution
at both nuclear andmitochondrial loci. Future work is needed
to test the generality of the AMR mechanistic hypothesis.

The mechanistic link between AMR and rates of molec-
ular evolution can be summarized as follows: 1) AMR is
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a measurement of the aerobic capacity and oxygen supply
by the cardiovascular system to the active tissues during
aerobic exercise; 2) mitochondrial efficiency is not related
to AMR because mitochondria are near their maximum
capacities to consume oxygen (VO2max) and limited only
by oxygen supply; 3) target blood flow to active muscles
promotes partial ischemia (i.e., hypoxia or reduced oxygen
supply) to less active tissues such as germ line cells; 4) after
exercise has ended, reoxygenation to ischemic tissues (e.g.,
germ line cells) might cause hyperoxia (i.e., excess of oxy-
gen) by increased blood flow; 5) both hyperoxia and hyp-
oxia are well-known physiological causes of ROS
production and DNA damage; 6) AMR, by proxy, also
measures ROS production during exercise in the whole
organism including germ line cells; 7) high ROS levels
are well-known causes faster rates of molecular evolution
if mechanisms that control ROS production are less effi-
cient or absent; and 8) high AMR species might experience
more frequent burst of exercise-related oxidative damage
and faster rates of molecular evolution.

Multifactorial Model of Molecular Evolution
Including AMR
Three main hypotheses explain the variability in rates of
molecular evolution among lineages and genomes, namely,
generation time, longevity, and metabolic rate hypotheses
(fig. 3). The current perception is that molecular evolution

is a synergistic result of many direct and indirect life history
agents whose main correlate is body size (Bromham 2011).
To my knowledge, my results are the first to support an
addition factor related to aerobic capacity in the form
of AMR or Scope, which affects the rate of molecular
evolution in ectotherms.

Multivariate approaches, such as path analysis, are more
suitable for addressing casual–correlative structures of
molecular evolution and life history traits. All the estimated
models are driven by AMRs for the following reasons:
1) AMR is a better estimate of the potential generation
of ROS free radicals than RMR (Schmidt-Nielsen 1984);
2) AMR is closer to the actual energetic cost under natural
conditions and closer to the FMR or the average daily met-
abolic rate (Gatten et al. 1992); 3) AMR is species-specific
and reflects the athletic prowess, which is a better predictor
of ROS production during aerobic exercise (Tonkonogi
et al. 2000); 5) the increased ROS production due to hyper-
oxia or hypoxia related to differential oxygen supply during
physical activity might significantly contribute to oxidative
stress, DNA damage, and rates of molecular evolution in
both nuclear and mitochondrial loci; and 6) single predic-
tor or multivariate models consistently support AMR to be
associated with rates of molecular evolution. Therefore,
the assessments of molecular evolution might need to
be expanded to include AMR or its metabolic proxies
(e.g., Scope).

FIG. 3. Summary of the three hypotheses of molecular evolution with their causal associations in poison frogs. The metabolic rate hypothesis
considers the production of ROS in relation with resting (RMR), nonsustainable physical activity (AMR), and Scope (difference between AMR
and RMR). The generation time hypothesis refers to the pace of DNA synthesis in the germ line per unit time. The longevity hypothesis is
related to the efficiency of DNA replication, mutation repair, time of reproduction, and management of oxidative stress (e.g., reduction of ROS
production). The results of the comparative analyses support a multifactorial model including AMR as a significant predictor of the rates of
molecular evolution for both mitochondrial and nuclear loci.
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A multifactorial model based on AMR has the following
assumptions: 1) the oxygen intake during physical activity
is coupled with the production of oxidative free radicals
(e.g., ROS); 2) the cellular respiration during physical activ-
ity is associated with mitochondrial DNA damage; 3) extra-
mitochondrial ROS produced during physical activity
causes oxidative damage to nuclear DNA and genetic
instability; 4) AMR reflects the ROS generation level in-
duced on germ cells by differential oxygen supply during
or after aerobic exercise; 5) the mutation rates of both nu-
clear and mitochondrial genomes are directly associated
with ROS production; and 6) variations in molecular evo-
lution is a multifactorial outcome related to DNA repair,
extracellular mutagens, generation time, lifespan, and other
genomic idiosyncrasies (e.g., organellar vs. nuclear). In the
case of poison frogs, other factors (e.g., aposematism, diver-
sification rates, and climatic variables) might be relevant
factors affecting the rates of molecular evolution, and they
should be further studied.

A likely expectation of the direct effect of AMR on rates
of molecular evolution is a molecular clock similar to the
RMR-based metabolic hypothesis (Martin and Palumbi
1993; Kumar and Hedges 1998). Additional data on sequen-
ces under neutral or near neutral evolution (e.g., introns
and pseudogenes) should be analyzed to understand the
implications of the association between AMR and rates
of molecular evolution. The observed path models reflect
the need of network-like descriptions of the interactions
between life history traits and molecular evolution. Finally,
the evolution at molecular level should be considered as a
multifactor outcome (Cortopassi and Wang 1996; Williams
1996; Perez-Campo et al. 1998), and phylogenetic path
analyses might provide testable models of molecular
evolution.

Supplementary Materials
Supplementary figure 1 and tables 1–8 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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