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Abstract

Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to
discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of
human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial
proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies
genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We
find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic
positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the
evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates
evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we
demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease
associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary
histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in
the design and analysis of future studies aimed at revealing the genetic basis of common human diseases.
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In genetic disease association studies, up to millions of ge-
nomic loci are genotyped across large population samples
of disease (case) and healthy (control) individuals to elu-
cidate genetic basis of diseases. Genetic associations are de-
termined by estimating the significance (P value) and effect
size (odds ratio) of the statistical relationship between al-
leles at genetic loci and a disease trait (Feero et al. 2010). To
date, thousands of putative disease-associated genetic var-
iants (disease-associated single nucleotide polymorphisms
[dSNPs]) underlying complex disease phenotypes have
been identified (Hindorff et al. 2011). However, discovered
dSNPs vary among studies and explain relatively small frac-
tions of the total heritability of the respective disease trait
(Manolio et al. 2009). Nonadditive effects of epistatic inter-
actions, effects of structural variants, synthetic associations
with rare alleles, epigenetics, and gene–environment inter-
actions are among many hypotheses put forward to explain
these phenomena (Dickson et al. 2010; Eichler et al. 2010;
McClellan and King 2010; Patel et al. 2010).

Instead, we take a phylogenetic approach to investigating
and solving the problem of reproducibility and discovery of
dSNPs. A long-term evolutionary history (phylogenetic) ap-
proach has not been explored likely due to the widespread
realization that genetic variants underlying complex diseases
will not impact fecundity because they occur relatively later

in life (Thomas 2004; Blekhman et al. 2008; Cai et al. 2009).
Still, molecular evolutionary patterns inform functional im-
portance of genomic positions, as functionally important
positions are likely to be more conserved and will directly
impact the frequency of segregating alleles within popula-
tions under the neutral theory of molecular evolution
(Kimura 1983; Barreiro et al. 2008; Kumar et al. 2009). How-
ever, the common practice of direct comparison of asso-
ciation statistics (e.g., P values and odds ratios) across
genomic positions in individual studies does not explicitly
account for these evolutionary differences among genomic
positions when identifying variants with the most signifi-
cant disease associations.

Therefore, we systematically investigated the relation-
ship between the evolutionary anatomies of positions har-
boring disease-associated variants for 5,831 SNPs (dSNPs)
reported to be associated with more than 230 disease phe-
notypes (2,021 published studies) representing a broad
range of complex disease categories (Chen et al. 2010)
(Table 1). We tested the null hypothesis that the discovery
of dSNPs is not biased by the long-term evolutionary prop-
erties of genomic locations harboring dSNPs, which are
inferred from multispecies alignments from diverse mam-
mals (fig. 1A; Materials and Methods). Figure 1B shows the
distribution of evolutionary conservation, estimated here
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as the percent evolutionary time span (ETS; see Materials
and Methods) over which the position is maintained in the
mammalian genomes, for positions harboring statistically
significant risk variants. The preponderance of dSNPs dis-
covered in positions with higher ETS is greater than that
expected based on the distribution of HapMap3 (Interna-
tional HapMap Consortium et al. 2010) population SNPs
(dotted line). This result is more pronounced for dSNPs
replicated in three or more studies in three or more distinct
populations (highly replicated [HR]-dSNPs, black bars)
than those reported in at least one study (gray bars). A sim-
ilar pattern is observed in an analysis of only those dSNPs
that have reported significant (P , 10�7) associations in
the National Human Genome Research Institute (NHGRI)
genome-wide association studies (GWASs) catalog (http://
www.genome.gov/gwastudies/) (fig. 1C). This pattern is
also observed in separate analysis of coding dSNPs and
noncoding dSNPs (fig. 1D). Therefore, dSNPs have been dis-
covered disproportionately at positions that have been
highly conserved over evolutionary time.

To assess the impact of this evolutionary trend in ex-
plaining the genetic variance of a disease trait, we investi-
gated the relationship between dSNP association odds ratio
and evolutionary conservation, because the proportion of
the genetic variance of a disease trait explained by a variant
relates to the effect size (odds ratio) of association (Park
et al. 2010). We find that the reported effect size of dis-
ease-associated variants is strongly related to the evolution-
ary conservation of its genomic position (fig. 2A, R2 5 0.87,
P, 10�8). The rate of long-term evolutionary substitution
of nucleotides also differentiates the odds ratio distribu-
tions for dSNPs found at positions with high (top 25%

ETS) as well as low (bottom 25% ETS) degrees of positional
conservation among species (fig. 2B). The quartile of the
slowest evolving positions harbor dSNPs with higher odd
ratios in association studies as compared with the quartile
of the fastest evolving positions (P, 0.05). These observa-
tions provides one possible fundamental explanation for
the preferential discovery of lower-frequency variants with
high odds ratios, as slower evolving positions are expected
to have lower minor allele frequencies (MAFs) due to stron-
ger purifying selection (e.g., Kumar et al. 2009) (fig. 2C).
This is confirmed in an analysis of 3,372 dSNPs reported
in 515 independent case-control GWAS, where we observe
a strong negative relationship between the evolutionary
rate and the normalized difference in the dSNP risk allele
frequencies between case and control populations in indi-
vidual GWAS studies (fig. 2D; R2 5 0.86, P , 10�5).

Our results indicate the need to use evolutionary con-
servation scores as priors in evaluating relative importance
of SNPs in disease association studies. Therefore, we inte-
grate evolutionary conservation score along with the allelic
P value of association for each SNP in GWAS to generate an
evolutionary-adapted ranking (‘‘E-rank’’; see Materials and
Methods). As designed, the E-rank ameliorates the effect of
evolutionary bias in disease association discovery by prior-
itizing putative dSNPs that have reached relatively high
population frequencies at positions with high ETS. To dem-
onstrate and assess the utility of this approach in prioritiz-
ing dSNPs in individual GWAS studies, we applied the
E-rank method to the original association data for
500,000 loci profiled across seven common diseases by
Wellcome Trust Case Control Consortium (WTCCC)(2007).
Figure 3A shows that a majority of significant dSNPs (NHGRI
GWAS catalog P, 10�7) represented in the WTCCC study
have improved E-ranks relative to their classical P value
based rank (‘‘P-rank’’). Overall, the dSNPs whose ranks are
improved by E-rank explain significantly more of the genetic
variance of the disease trait in the measured population
relative to those dSNPs with unimproved ranks (fig. 3B).

Similarly, we found the E-rank approach to perform bet-
ter in discriminating dSNPs that have been replicated in
three or more independent studies (HR-dSNPs) or by
large-scale meta-analysis, which is used in this study as
an indicator of likely true positive association (NCI-NHGRI
Working Group on Replication in Association Studies et al.
2007; Wei et al. 2009). For this analysis, we identified 859
HR-dSNPs in our data set of 8,963 and compared the per-
formance of E-ranks versus P-ranks in discriminating repro-
ducible disease associations from the original WTCCC data.
Figure 4 shows the resulting Receiver Operating Character-
istic (ROC) curves, where the area under the curve (AUC)
represents the accuracy of P-rank (black line) and E-rank
(red line) to predict replicated associations for the seven
diseases in WTCCC data. In every case, E-rank performs bet-
ter than P-rank, with the greatest improvements found for
diseases that have been previously estimated to have rel-
atively low degrees of heritability. For example, both hyper-
tension and Type 2 diabetes gain 10% and 9% accuracy,
respectively, using the E-rank approach, yet both traits

Table 1. Summary of Major Disease Categories Represented by
Variants Used in This Study.

Disease Category
Number of
Studies

Number
of SNPs

Distinct
Diseases

Neoplasms 132 514 29
Cardiovascular diseases 86 370 24
Nervous system diseases 89 748 20
Digestive system diseases 84 376 19
Eye diseases 61 102 13
Musculoskeletal diseases 70 749 13
Mental disorders 73 1311 11
Nutritional and metabolic diseases 120 414 9
Female urogenital diseases and
pregnancy complications 12 29 8
Skin and connective tissue diseases 58 795 6
Respiratory tract diseases 20 127 5
Hemic and lymphatic diseases 9 23 5
Otorhinolaryngologic diseases 3 21 3
Stomatognathic diseases 5 12 3
Bacterial infections and mycoses 3 18 3
Endocrine system diseases 2 15 2
Virus diseases 3 51 2

NOTE.—dSNPs used in this study were organized into high-level disease categories
using the Medical Subject Headings (MeSH) annotating their associated disease
phenotype in the VARIMED database. dSNPs were placed into top-level MeSH
categories using the MeSH hierarchy. In cases where the dSNPs mapped to more
than one top-level disease category, the dSNP was counted once in each category.
If the dSNP phenotype did not have an associated MeSH annotation (37 dSNPs in
this study), it was not represented in this table.
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are individually estimated to have total heritability below
30% (Poulsen et al. 1999; Agarwal et al. 2005).

On the other end of the spectrum, the heritability of
Type 1 diabetes is estimated to be near 90%, and evolution-
ary priors do not provide significant additional gains above
the high predictive accuracy (AUC 5 0.94) from P-ranks
(Wei et al. 2009). Across all seven diseases, we observe that
E-rank improvements track closely with the contemporary
knowledge of the heritability of the diseases (fig. 2E), which
suggests that evolutionary anatomies of disease-associated
risk variants could inform on the nature and complexity of
the allelic architecture underlying common diseases. Future
efforts to develop more sophisticated evolutionary meth-
ods for disease association analysis may realize even greater

gains in both predictive power and our understanding of
the genetic architectures of diseases.

In summary, our results demonstrate the utility and po-
tential clinical relevance of evolutionary properties derived
from cross-species genome analysis, highlighting the need
and importance of sequencing the genomes of species both
closely and distantly related to humans in evolutionary
time, to enable and improve the fidelity of evolutionary
inferences bearing on human health and disease (Kumar
et al. 2011). Our approach is dependent on the availability
of comprehensive genomic sequence data for extant mam-
malian genomes, which dictates the accuracy of estimating
ETS and evolutionary rate. Therefore, future efforts to
increase the availability of high-quality genome assemblies

FIG. 1. Patterns of evolutionary conservation of positions harboring disease-associated SNPs. (A) A time tree of 36 mammalian species used for
deriving evolutionary information for each SNP. Species divergence times were obtained from www.timetree.org (Hedges et al. 2006).
(B) Relationship of the observed-to-expected numbers of disease-associated SNPs, dSNPs, at human genomic positions preserved with different
degrees over time (high-to-low is given left-to-right). Results from all dSNPs (gray bars) and high-confidence (HC) dSNPs (black bars) are
shown. Expected numbers were estimated using HapMap3 SNPs. The right axis indicates the fraction of total SNPs in each dSNP category that
fall into the conservation bins defined on the bottom axis. (C) The distribution of evolutionary conservation for GWAS dSNPs associated at
a stringent significance threshold of P , 5 � 10�7 or lower in two or more studies (red, dashed) is compared with the distribution of
evolutionary conservation of 100,000 randomly selected tagSNPs chosen from two of the most popular GWAS genotyping platforms (black).
The mean evolutionary conservation for GWAS dSNPs is significantly higher than that of tagSNPs (t-test P , 5 � 10�20). (D) Comparison of
average conservation of coding (gray squares) and noncoding (circles) dSNPs and HC dSNPs to HapMap3 SNPs. The HapMap3 distributions are
estimated from a representative random sample of 100,000 HapMap3 SNP loci. As expected, coding dSNPs occur at more highly conserved
positions than noncoding dSNPs, but the trend toward more conserved positions at disease-associated loci is observed in both cases. SNPs in
noncoding regions are overall found at much less conserved positions, however, the mean conservation for noncoding is significantly more
conserved than noncoding HapMap SNPs (error bars: standard error of mean) (* indicates t-test P value , 10�8 compared with HapMap3).
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FIG. 2. The effect size of disease variants relates to the evolutionary anatomy of genomic positions. (A) Relationship between the odds ratio
reported for disease-associated variants and the evolutionary conservation of the genomic position harboring the variant. All reported odds
ratios were normalized toward disease risk estimation by taking the exponent of the absolute loge of odds ratios , 1. Each point represents the
mean of nonoverlapping bins of n 5 200 associated loci ordered by increasing %ETS. The trend was best described by a second order
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for nonhuman mammals will improve methods for evolu-
tionary assessment of human disease–associated variation.
Furthermore, the results presented here have implications
for evaluating rare versus common-variant hypotheses
concerning genetic susceptibility to common diseases
(Bodmer and Bonilla 2008; Goldstein 2009), which is of
great practical significance in clinical genomics. We have
also shown that position-specific evolutionary information
can enhance discovery in individual association studies.
Therefore, evolutionarily informed analyses of existing
and future association data would likely enhance discovery

of genetic disease susceptibility variants, and offer further
crucial insights into the genetic basis of human diseases.

Materials and Methods

SNP Data Sets
We used data from the VARIMED database of quantitative
human disease–SNP associations curated from the full text
and supplementary info of 3,333 published human genetics
papers recording more than 100 features per SNP associ-
ation, including the disease name, specific phenotype,

FIG. 3. Characteristics of evolutionary ranking (E-rank) of disease-associated variants in WTCCC. (A) The difference in the original P value rank
(P-rank) versus the evolutionary adjusted rank (E-rank) is shown for a large set of established disease-associated variants that were measured in
the WTCCC study. E-rank generally improves the rank of bona fide disease associations in the WTCCC data. (B) Although the E-rank method
does not improve the ranks of all established disease-associated variants in the WTCCC data, it tends to improve the ranks of SNP loci that
explain significantly more of the genetic variance of the disease trait compared with the SNP loci that are not improved by E-rank (t-test P, 1
� 10�5; error bars 5 standard error of mean).

polynomial (R2 5 0.87, P , 10�8; Pearson r 5 0.86, P , 10�4) (error bars: standard error of mean [SEM]). (B) Slowly evolving sites (bottom
25% of evolutionary rates) at highly conserved positions (top 25% of evolutionary conservation) exhibit higher average odds ratios than faster-
evolving sites (top 25% of evolutionary rates) at both conserved (top 25% ETS) and nonconserved (bottom 25% ETS) positions (error bars:
SEM). (C) Relationship of the multispecies evolutionary rate with the MAFs in human populations. Each point is estimated as the average of
evolutionary rate and MAFs for 100,000 SNPs randomly sampled from HapMap 3 CEU population data (second order polynomial R2 5 0.6,
P , 10�8; Pearson r 5 �0.76; P , 10�4) (error bars: SEM). (D) The influence of evolutionary rate on the risk allele frequency disparities
between cases and controls. Df is the difference in risk allele frequency between cases (fcases) and controls (fcontrols) divided by fcontrols to control
for the MAF of the risk allele in healthy populations; Df 5 (fcases � fcontrols)/ fcontrols. Each point represents the mean of nonoverlapping bins of
n5 200 associated loci ordered by increasing evolutionary rate (third order polynomial R2 5 0.86, P, 10�5; Pearson r5 0.74, P, 10�3) (error
bars: SEM). (E) For each of the diseases measured in the WTCCC, the gain in predictive accuracy (i.e., difference between the evolutionary
adjusted P value (E-rank) AUC and the ‘‘raw’’ P value (P-rank) AUC) is plotted against the total heritability estimate for the disease (Sofaer
1993; Poulsen et al. 1999; Katzmarzyk et al. 2000; Smoller and Finn 2003; Agarwal et al. 2005; Harney et al. 2008; Ounissi-Benkalha and
Polychronakos 2008).
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study population, case and control population informa-
tion, genotyping technology, major/minor/risk alleles, odds
ratio, 95% confidence interval of the odds ratio, published
P value, and genetic model (further details in references
Ashley et al. 2010 and Chen et al. 2010). For this study,
we only considered single locus associations and excluded
variants for which information on the effect size (odds ratio)
was not available in the published results. We selected dis-
ease associations with reported odds ratio values and as-
sociation P value ,5 � 10�3. These criteria yielded a set
of 5,831 variants associated with 230 disease phenotypes
obtained from 2,021 published studies.

We also obtained data from a public catalog of disease
associations curated from published GWAS, which is pro-
vided in downloadable format from http://www.genome.
gov/gwastudies/ (accessed 3 May 2011). Although the
VARIMED database is more comprehensive in its annotation
and representation of published disease-associated variants,
data from the NHGRI GWAS catalog was included in
the analysis because it is a widely used and an accepted re-
source for disease association data. All available data from
HapMap3 was retrieved from the HapMap Project FTP
server (ftp://ftp.ncbi.nlm.nih.gov/hapmap/). All SNPs were
mapped to their genomic locations on hg19 release using
NCBI dbSNP (hs130) identifiers.

Evolutionary Anatomies of SNP Loci
For each SNP, we estimated evolutionary conservation
score and the rate of substitution using mammalian nucle-
otide sequence alignments obtained from the University of

California at Santa Cruz Genome Browser resource (Kent
et al. 2002). ‘‘Evolutionary conservation’’ score quantifies
the fraction of evolutionary time among species for which
the given human position has existed in the evolutionary
history of the mammalian lineage (%ETS; fig. 1). In this way,
the evolutionary conservation relates to the retention of
the genomic position or positional conservation (Kumar
et al. 2009). In addition, we estimated the ‘‘evolutionary
rates’’ of nucleotide change at each site by dividing the total
number of substitution in the mammalian phylogeny by
the total time elapsed on the tree (substitutions per site
per billion years) (Kumar et al. 2009). For each position,
species containing alignment gaps or missing data were
pruned from the tree before calculating substitution rates.

Definition of the E-Rank Method to Prioritize
Disease-Association Statistics
Because evolutionary information can be estimated from
multispecies alignments for each position in the human
genome independent of the population data a priori, its
use is particularly attractive to prioritize loci with segregat-
ing alleles in a disease association study to help identify
genuine dSNPs. Based on the empirical observations con-
cerning the evolutionary properties of dSNPs revealed by
this study, we developed an evolutionary ranking method
(E-rank) in which the allelic P value of association (P) for an
SNP was modified using the evolutionary conservation of
the position harboring the allele and the MAF of the
tagSNP: E-rank 5 (P/MAF) � (1/[Kr�Kt]), where Kr is the
rank of the evolutionary rate of the position and Kt is
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FIG. 4. Evolutionary adjustment improves discriminatory power to identify reproducible associations. ROC curves representing the accuracy,
represented by the AUC, to predict associations subsequently replicated in three or more independent association studies are shown for each
of the seven disease association studies represented in the Wellcome Trust Case Control Consortium (WTCCC) data. The black line indicates
the predictive accuracy of the original allelic association P values estimated by comparison of cases versus controls in the WTCCC study
(P-rank). The red line indicates the predictive accuracy after prioritizing SNP loci using the E-rank approach. The gray diagonal line represents
random performance (AUC 5 0.5).
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the rank of the evolutionary time span of the position. The
rationale for this approach is that segregating dSNPs found
at positionally conserved loci, quantified by Kr, should be
given a better rank (higher ordinal rank) than segregating
dSNPs at less retained positions. Furthermore, dSNPs at
faster-evolving positions, quantified by Kr, should be given
a better rank (higher ordinal rank) because these positions
are more likely to harbor high-frequency dSNPs explaining
greater proportions of the genetic variance of a trait. At
positions with high ranks of Kr and Kt, the MAF adjusted
P value of association (P/MAF) will become smaller by mul-
tiplication with the inverse product of Kr and Kt, which will
improve its overall priority position in the ranking of asso-
ciation results.

The P is divided by MAF because P is a function of both
the MAF and the effect size (i.e., odds ratio) of the associ-
ated allele. For example, if we analyze the Wellcome Trust
Case Control Consortium (2007) results for Crohn’s disease,
across 500,000 loci, the Pearson correlation between the
log(P value) and the log(odds ratio) is rather weak in effect
(R 5 0.22, P , 10�15). However, the correlation between
log(P value)/MAF and the log(odds ratio) is much stronger
(R5 0.73, P, 10�15) with the binomial variance from the
allele frequency accounted for. Therefore, we divide by
MAF to normalize the effect of the control allele frequency
on the probability of rejecting the null hypothesis given the
same sample size, and then perform evolutionary adjust-
ment on the remaining component. We applied E-rank
to association data for 500,000 loci profiled across seven
common diseases by the WTCCC.

Estimation of Genetic Variance Explained by
a Disease-Associated SNP
Using the same approach taken by Park et al. (2010), we
estimated the percent genetic variance (GV) explained
by a disease-associated SNP, i, as GVi 5 2 � log(ORi)

2

� MAFi(1 � MAFi), where ORi is the odds ratio of the as-
sociation between SNP i and its respective disease trait, and
MAFi is the MAF of SNP i in the measured population. This
method provides an estimate of GVi under the assumption
of an additive polygenic model.

Determination of a ‘‘Gold Standard’’ of
Reproducible Disease Associations
To determine one set of reproducible SNPs, we queried the
VARIMED disease SNP database to identify SNP loci that
were reported to be significantly associated (P, 0.05) with
the relevant disease phenotype in three or more indepen-
dent studies measured from Caucasian populations, which
was the primary ethnicity measured by the WTCCC.

Definition of the SNP Classification Problem
SNPs measured in the WTCCC study that mapped to
a ‘‘gold standard’’ replicated SNP by dbSNP identifier were
assigned to the ‘‘Replicated’’ class and all others were as-
signed to the ‘‘Unreplicated’’ class. Note that this includes
the directly measured SNP and any other SNP that could

serve as a proxy SNP determined by the LD threshold
(r2. 0.8). Accuracy in distinguishing Replicated SNPs from
Unreplicated was determined for each disease using the
original allelic association P value and the E-rank by esti-
mating the area under the ROC curve (AUC) using the
ROCR package (Sing et al. 2005). In this way, the AUC re-
lates to the likelihood that the study will rank a randomly
selected locus with reproducible association (Replicated
class) higher than a randomly selected locus with nonrep-
roducible association (Unreplicated class).
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