Letter

Molecular evolution of the ligands of the insulin-signaling pathway: dilp genes in the genus Drosophila

Sara Guirao-Rico and Montserrat Aguadé*

Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain

e-mail addressess: sguirao@ub.edu; maguade@ub.edu

* Corresponding author

Montserrat Aguadé

Address: Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Diagonal, 645, 08028 Barcelona, Spain

Title length: 103 characters.

Abstract length: 158 words.

Total length of text: 1600 words, 10236 characters.

Total page requirement: 3.25

Number of references: 9
ABSTRACT

Drosophila melanogaster, unlike mammals, has seven insulin-like peptides (DILPS). In Drosophila, all seven genes (*dilp1*-7) are single copy in the 12 species studied, except for *D. grimshawi* with two tandem copies of *dilp2*. Our comparative analysis revealed that genes *dilp1* to *dilp7* exhibit differential functional constraint, which is indicative of some functional divergence. Species of the subgenera Sophophora and Drosophila differ in some traits likely affected by the insulin-signaling pathway, such as adult body size. It is in the branch connecting the two subgenera that we found the footprint left by positive selection driving non-synonymous changes at some *dilp1* codons to fixation.

Finally, the similar rate at which the two *dilp2* copies of *D. grimshawi* have evolved since their duplication and the presence of a putative regulatory region highly conserved between the two paralogs would suggest that both copies were preserved either because of subfunctionalization or dose-dependency rather than by the neofunctionalization of one of the two copies.
In *Drosophila melanogaster*, the insulin-signaling pathway controls body size and some life history traits such as fertility and lifespan (as reviewed in Zera, Harshman and Williams 2007). Since these characters generally reflect adaptive responses to environmental pressures, both positive and negative selection might have played an important role in the molecular evolution of the underlying genes. Here we have focused on the seven genes (*dilp1*-7; fig. 1) encoding the Drosophila insulin-like peptides, which are the ligands that trigger the insulin-signaling cascade. Despite the high divergence between members of this small multigene family, the encoded proteins are structurally similar to the single mammalian insulin peptide (fig. 1). The present comparative analysis of the *dilp* genes across the Drosophila phylogeny aimed firstly to determine the role of purifying selection in shaping the *dilp* genes evolution. Secondly, we evaluated the putative role of positive selection acting on *dilp* genes soon after the separation of the Sophophora and Drosophila subgenera, given previous observations indicating that adult body size differs between subgenera (Sturtevant 1939; Pitnick, Markow and Spicer 1995; Guirao-Rico and Aguadé 2009) and the possible effect of the insulin-signaling pathway on adult body size. Finally, we evaluated the mode of evolution of the tandem *dilp2* duplication detected in the *D. grimshawi* lineage.

Orthologs of the 7 *dilp* genes present in *D. melanogaster* and *D. simulans* were identified in the assembled genomes of the other 10 species with the exception of *dilp2* in *D. persimilis*, where it would lie in an unsequenced part of the corresponding scaffold (see supplementary material). The presence of a single annotated *dilp* copy of each gene was confirmed in all other cases with the exception of *D. grimshawi*, where two tandem copies of *dilp2* were identified (named *dilp2-p* and *dilp2-d*).

The selective pressures acting on *dilp* genes — measured as the non-synonymous to synonymous divergence ratio (*ω* = *dN/dS*) — were analyzed by maximum likelihood
using the curated multiple nucleotide alignments (either for each gene or concatenated for all genes (see supplementary material) and the best-supported phylogenetic tree topology for all species studied (i. e., considering D. erecta and D. yakuba as sister species; Pollard et al. 2006; Clark et al. 2007). The comparison of nested evolutionary models M\(_{G0}\) and M\(_{G3}\) using the concatenated sequences yielded highly significant results (table 1) both for the 12 Drosophila species and for a subset including the 5 more closey related Sophophora species (D. melanogaster, D. simulans, D. sechellia, D. yakuba and D. erecta). The estimated \(\omega\) values were less than 1 for all dilp genes (table 1), indicating that they have all been under purifying selection.

Moreover, the detected heterogeneity indicates that the strength of selection differed among genes (table 1), with gene dilp7 the most constrained. When each dilp gene was considered separately (table 2), the comparison of the nested branch-models M0 and FR yielded in all cases a non-significant result, which would support a single \(\omega\) value for each gene and, therefore, that the strength of purifying selection acting on each gene had not varied across lineages. The comparison of the nested site-models M1 and M2 provided no evidence for positive selection acting at particular codons of any of the 7 dilp genes.

Given previous observations indicating that adult body size differs between species of the Sophophora and Drosophila subgenera (Sturtevant 1939; Pitnick, Markow and Spicer 1995; Guirao-Rico and Aguadé 2009) and the possible effect on this trait of the insulin-signaling pathway genes, the branch connecting the 2 subgenera was considered as the foreground branch in ML analyses that use different branch-site models (M1 versus MA, and MA\(_{fix}\) versus MA) to explore the possibility that positive selection had acted on some sites of the DILP proteins during that time period. Only for the dilp1 gene, the MA model fitted the data significantly better than both the M1 and
MAfix models (table 2), suggesting that non-synonymous changes at some dilp1 codons had been positively selected in the branch connecting the two subgenera. The Bayes Empirical Bayes (BEB) method allowed the identification of 2 residues that had a posterior probability higher than 0.99 to have been under positive selection (supplementary fig. S3). Given the location of the two putatively selected residues in the protein (numbers 54 and 148 according to the annotation of the D. melanogaster dilp1 gene in flybase, http://flybase.org/), changes in these residues (S54N and A148L; supplementary fig. S3) might have affected the secondary structure of the DILP1 protein, and potentially some aspect of its function.

Synonymous sequence divergence between the two copies of dilp2 detected in D. grimshawi allowed estimating the age of the duplication event at ~ 10.5 Mya (95% CI, 0.6-22.9; see supplementary material). Divergence between the two copies was lower at non-synonymous ($K_a = 0.068$) than at synonymous sites ($K_s = 0.206$), an indication of the differential strength of purifying selection on the two site classes. Moreover, their ratio ($\omega = 0.329$) was higher than between-orthologs estimates (table 1), suggesting that the level of functional constraint had changed after the duplication. In order to ascertain whether constraint had changed similarly in both copies, an ML analysis using branch models was performed considering the two dilp2 copies of D. grimshawi and the single dilp2 gene present in the other species studied. Since no heterogeneity among lineages was detected at the dilp2 gene (table 2), two possibilities were considered: i) a single ω value for the two D. grimshawi copies and another for their orthologs (M-2ratio), and ii) a different ω value for each of the two D. grimshawi copies and for their orthologs (M-3ratio). The ML analysis favored the M-2ratio model (P-value = 0.0004; supplementary table S1), with an estimated $\omega = 0.374$ value for the two dilp2 genes of D. grimshawi, and a much lower estimate for their orthologs ($\omega =$
0.066). Accordingly, the two dilp2 copies of D. grimshawi would have been subjected to a similar level of functional constraint since duplication, a level that was however lower than for the single dilp2 gene present in the others species. Comparison of the two DILP2 proteins revealed 13 amino acid differences (8 located in the C peptide and 5 in the A chain). The non-synonymous substitutions underlying 8 of the 13 amino acid replacements could be polarized after reconstruction of the ancestral coding region of the two dilp2 paralogs (Yang 1997). The number of non-synonymous substitutions did not differ significantly between the dilp2_p and the dilp2_d branches: 7 and 5, respectively.

The extent of the duplicated region was established through dot-plot analysis (fig. 2; see supplementary material). This region (~1200 bp long) includes the entire dilp2 gene and part of its 5’ and 3’ flanking regions. Comparison of the 5’ flanking region (~500 bp) between copies revealed that divergence at this region ($K = 0.008$) was significantly lower than at synonymous sites of the coding region ($K_s = 0.206$). In $D. melanogaster$, the 5’ flanking region encompasses a fragment that controls the expression of this gene in seven median neurosecretory cells (m-NSCs) in the brain [9]. Location of this fragment in $D. melanogaster$ (between sites -540 and -146) is partly coincidental with that of the 5’ highly conserved region between the two $D. grimshawi$ copies, which raises the possibility that the duplicated upstream region encompasses a regulatory element present in both $D. grimshawi$ paralogs.

The similar number of non-synonymous substitutions in each copy and the differential but similar level of functional constraint detected at both copies would suggest that the duplicates were preserved either because of subfunctionalization or of dose-dependency rather than by the neofunctionalization of one of the two copies. If the highly conserved upstream region reflected the presence of a common regulatory
element, this regulatory strategy would be compatible with both the
subfunctionalization and the dose-dependent hypotheses.

Adult body size is several times larger in *D. grimshawi* and in other Hawaiian
drosophilids than in *D. melanogaster*, and also larger than in the virilis and repleta
species groups (Pitnick, Markow and Spicer 1995). It is worth noting that among *dilp*
genesis, *dilp2* is the most highly expressed as well as the most potent growth stimulator in
D. melanogaster. Moreover, its overexpression during development results in larger
flies of this species (39% increase in body weight; Brogiolo et al. 2001). It is tempting
to speculate that if its duplication in the *D. grimshawi* lineage implied an increase in the
dilp2 gene dose, the duplication might have contributed to the larger body size of this
and other Hawaiian species relative to the *D. virilis* and *D. mojavensis* lineages. This
scenario needs, however, to be further evaluated through functional analyses.
ACKNOWLEDGEMENTS

We thank J. Rozas and Alejandro Sánchez-Gracia for comments on the manuscript. We also thank Serveis Cientifico-Tècnics, Universitat de Barcelona, for automated sequencing facilities. S. G. was supported by a predoctoral fellowship from Ministerio de Educación y Ciencia (Spain). This work was supported by grants BFU2004-02253 and BFU2007-63229 from Comisión Interdepartamental de Ciencia y Tecnología, Spain, and grants 2005SGR-00166 and 2009SGR-1287 from Comissió Interdepartamental de Recerca i Innovació Tecnològica, Generalitat de Catalunya, Spain, to M. A.
LITERATURE CITED

FIGURE LEGENDS

Figure 1. (A) Genomic organization and structure of the *dilp1-4, dilp5, dilp6* and *dilp7* gene regions of *D. melanogaster*. Autosomic genes (*dilp1-5*) map at band 67C8-9 on the left arm of the third chromosome, and X-linked genes (*dilp6* and *dilp7*) map at bands 3A1 and 3E2, respectively. The scale line represents the genomic regions with distances in Kb. The black arrowhead points to the centromere. In genes, arrows indicate the direction of transcription. Shaded boxes and V symbols indicate exons and introns, respectively. *dilp5* is separated from *dilp4* by one intervening gene. (B) Schematic representation of the predicted structure of the DILP proteins. SP, signal peptide. The active peptide chains are denoted in grey. The inter- and intra-chain disulfide bonds are represented by black connecting lines.

Figure 2. Dot-plot analysis of the *dilp2* region of *D. grimshawi*. The *D. grimshawi* sequence between genes *dilp1* and *dilp3* is represented on the X (left to right) and Y (bottom up) axes, with genes *dilp2-p* and *dilp2-d* indicated in black boxes.
Table 1. Estimates of the ω value from the combined maximum likelihood analysis of the seven *dilp* genes in *Drosophila*

<table>
<thead>
<tr>
<th>Alignment</th>
<th>dilp1</th>
<th>dilp2</th>
<th>dilp3</th>
<th>dilp4</th>
<th>dilp5</th>
<th>dilp6</th>
<th>dilp7</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete-set of speciesa</td>
<td>0.09</td>
<td>0.08</td>
<td>0.14</td>
<td>0.11</td>
<td>0.24</td>
<td>0.18</td>
<td>0.03</td>
<td>2.86 x 10^{-21}</td>
</tr>
<tr>
<td>5 species</td>
<td>0.42</td>
<td>0.11</td>
<td>0.08</td>
<td>0.22</td>
<td>0.34</td>
<td>0.28</td>
<td>0.06</td>
<td>4.68 x 10^{-9}</td>
</tr>
</tbody>
</table>

a It includes those *Drosophila* species in which all seven *dilp* genes were detected.

See supplementary material for a description of the models and test performed. P-values of twice the difference of the log likelihood between the nested models M_{G0} and M_{G3}. Statistical significance is indicated in bold.
Table 2. Analysis of the individual *dilp* genes across the Drosophila phylogeny

<table>
<thead>
<tr>
<th>Comparison</th>
<th>dilp1</th>
<th>dilp2</th>
<th>dilp3</th>
<th>dilp4</th>
<th>dilp5</th>
<th>dilp6</th>
<th>dilp7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.82)</td>
<td>(0.79)</td>
<td>(0.78)</td>
<td>(0.53)</td>
<td>(0.34)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>M1 vs M2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0.55)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>M1 vs MA</td>
<td>11.60</td>
<td>8.14</td>
<td>0.08</td>
<td>1.59</td>
<td>0</td>
<td>1.24</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.02)</td>
<td>(0.96)</td>
<td>(0.45)</td>
<td>(1)</td>
<td>(0.54)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>MA<sub>fix</sub> vs MA</td>
<td>4.19</td>
<td>0.8</td>
<td>0</td>
<td>0.10</td>
<td>0</td>
<td>0.48</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.37)</td>
<td>(1)</td>
<td>(0.75)</td>
<td>(1)</td>
<td>(0.49)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

For each comparison, values in the first and second rows correspond to twice the difference of the log likelihood between two nested models, respectively, and their *P*-values (in parentheses). Statistical significance is indicated in bold. See supplementary material for a description of the models and different tests performed.