GIN transposons:
Genetic elements linking retrotransposons and genes

Ignacio Marín
Instituto de Biomedicina de Valencia
Consejo Superior de Investigaciones Científicas (IBV-CSIC)
Valencia, Spain.

Running head: GIN elements and genes

Correspondence:
Prof. Ignacio Marín
Instituto de Biomedicina de Valencia
Calle Jaime Roig, 11
Valencia 46010, Spain.
Tel: (34) 963393770
FAX: (34) 963690800
E-mail: imarin@ibv.csic.es
Abstract

In a previous work, we characterized a gene, called *Gypsy Integrase 1 (GIN1)*, which encodes a protein very similar to the integrase domains present in Gypsy/Ty3 retrotransposons. I describe here a paralog of *GIN1, GIN2*, and show that both genes are present in multiple vertebrates and that a likely homolog is found in urochordates. Surprisingly, phylogenetic and structural analyses support the counterintuitive idea that the *GIN* genes did not directly derive from retrotransposons, but from a novel type of animal-specific DNA transposons, the GIN elements. These elements, described for the first time in this study, are characterized by containing a gene that encodes a protein that is also very similar to Gypsy/Ty3 integrases. It turns out that the sequences of the integrases encoded by *GIN1* and *GIN2* are more similar to those found in GIN elements than to those detected in retrotransposons. Moreover, several introns are in the same positions in the integrase-encoding genes of some GIN elements, *GIN1* and *GIN2*. The simplest explanation for these results is that GIN elements appeared early in animal evolution by cooption of the integrase of a retrotransposon, they later expanded in multiple animal lineages and, eventually, gave rise to the *GIN* genes. In summary, GIN transposons may be the “missing link” that explain how *GIN* genes evolved from retrotransposons. *GIN1* and *GIN2* may have contributed to control the expansion of GIN elements and Gypsy/Ty3 retrotransposons in chordates.
Introduction

Once considered strictly selfish sequences, it is today accepted that mobile elements are in fact subtly coevolving with the genome of the hosts in which they thrive (see e. g. the recent reviews by Feschotte 2008; Venner et al. 2009). Particularly, it has been extensively documented that new, often essential, genes of the hosts derive from different classes of mobile sequences (reviewed by Volff 2006, Dooner and Weil 2007, Feschotte and Pritham 2007, Jurka et al. 2007). The emergence of many of these novel genes follows simple patterns. For example, the insertion of mobile sequences may contribute novel exons to a gene. In another typical scenario, recombination events put together coding sequences of a mobile element and a gene. However, other cases are far less evident. The Gypsy Integrase 1 (GIN1) gene is one of these more complex examples. Some years ago, we found that gene in several eutherian mammals, including humans. It encoded an integrase that was closely related to the integrase domains included in the pol polyproteins of Gypsy/Ty3 retrotransposons (Lloréns and Marín 2001). However, how GIN1 emerged was difficult to envisage. On one hand, active Gypsy/Ty3 retrotransposons are absent in mammals. Moreover, although the mammalian genomes contain, in addition to GIN1, a substantial group of genes derived from Gypsy/Ty3 retrotransposons, none of those genes encodes for an integrase (Volff et al 2001; Lynch and Tristem 2003; Brandt et al. 2005; Youngson et al. 2005; Campillos et al. 2006; Marco and Marín 2009). Finally, the process that allowed an integrase domain, part of a polyprotein, to become an independent gene was not obvious. Recently, I found sequences very similar to GIN1 in multiple animal species. The analyses of those sequences provide new clues about the evolutionary past of the Gypsy Integrase genes. I show here that GIN1 is much older than previously thought and also describe a second GIN gene in vertebrates, GIN2, and a potential GIN gene in urochordates. However,
the most significant finding derives from the characterization of a novel type of DNA transposons, the GIN elements. The evidence obtained indicates that *GIN1* and *GIN2* evolved from these transposons, and not, as it was assumed so far, from Gypsy/Ty3 retrotransposons.

Material and methods

GINI-related sequences were obtained from the nr, est, gss, wgs and htgs databases available at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Multiple searches were performed using TblastN, BlastP or TblastX (at http://blast.ncbi.nlm.nih.gov/) until no additional sequences were recovered. Thus, all the full-length sequences closely related to *GINI* available at the end of October 2009 were detected. The number of new significant sequences was striking. After eliminating duplicates and very similar sequences ($\geq 99\%$ identical) 68 new animal sequences were detected that were much more similar to human and mouse *GINI* than the integrase domains of Mdg1 retrotransposons, previously characterized as the closest relatives of *GINI* by Lloréns and Marín (2001). For example, some sequences of the cnidarian *Hydra magnipapillata* were 31 % identical and 51 % similar to human *GINI* along 386 amino acids (E-value, TblastN against nr database: 10^{-49}). When *GINI* was compared to Mdg1 retrotransposons, the most similar sequences had just 30 % identity and 50 % similarity along 202 amino acids (corresponding E-value: 10^{-24}).

To sort out these new sequences, phylogenetic analyses were performed following methods similar to those recently described in other recent papers of my group (e. g. Marco...
and Marín 2009). First, protein sequences were aligned using ClustalX 2.07 (Larkin et al. 2007). The alignments were manually corrected, when needed, with the GeneDoc sequence editor (Nicholas and Nicholas 1997). Dendrograms were then built using data extracted from that alignment, following three different procedures: Neighbor-joining (NJ), Maximum parsimony (MP) and Maximum likelihood (ML). The NJ trees were obtained using the routine in MEGA 4 (Tamura et al. 2007), while MP analyses were performed using PAUP* 4.0 beta 10 version (Swofford 2002) and ML reconstructions were established using PhyML 3.0 (Guindon and Gascuel 2003). For NJ, the pairwise deletion option was used (as recommended by Dwivedi and Gadagkar 2009) and Kimura’s correction implemented. Parameters for MP were as follows: 1) all sites included, gaps treated as unknown characters; 2) randomly generated trees used as seeds; 3) maximum number of trees saved equal to 200; and, 4) heuristic search using the tree bisection-reconnection algorithm. Finally, for ML analyses, ProtTest (Abascal et al. 2005) was used to determine the best model of sequence evolution. The best ProtTest results were obtained with the LG+I+G+F model (i.e. LG matrix of amino acidic substitutions, presence of invariable sites, multiple rates of change and frequencies at equilibrium estimated from the alignment). Therefore, this model was used in the PhyML analyses. ML searches were started from the BioNJ tree and gaps were also treated as unknown characters. Reliability of the topologies was tested by bootstrap analyses. 1000 bootstrap replicates were performed for the NJ and MP analyses and 100 for the more computer-intensive ML analyses. MEGA 4 was used to edit and draw the final trees.

Gene and transposon structures were determined by combining the results of analyses performed with TblastN and TblastX, ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/), InterproScan (http://www.ebi.ac.uk/Tools/InterProScan/; Zbođnov and Apweiler 2001) and
GenomeScan (http://genes.mit.edu/genomescan.html; Yeh et al. 2001). The combination of these analyses allowed establishing the most likely beginning and end of the genes and mobile elements, the intron-exon structure of their coding regions and the protein domains present in their products. Finally, the characterizations of the current locations of the GIN genes in different genomes were performed at the Ensembl Genome Browser web page (http://www.ensembl.org/index.html; Hubbard et al. 2009). BLAST analyses against Ensembl data were performed in order to determine the location of the GIN1 and GIN2 sequences in multiple genomes and, when required, additional TblastN analyses against the NCBI databases to confirm orthologies between particular genes, adjacent to either GIN1 or GIN2, in different species.

Results

This work started when I observed, after an update of a database of Gypsy retrotransposon and retroviral integrases generated to characterize the CGIN1 gene (Marco and Marín 2009), that there were many novel sequences that had a striking similarity to GIN1. Preliminary phylogenetic analyses (see Supplementary File 1) indicated that many of those new sequences were indeed substantially more similar to GIN1 than the sequences previously described as its closest relatives, derived from retrotransposons of the Mdg1 clade (Lloréns and Marín 2001). Therefore, all the animal sequences that were potentially interesting were selected and phylogenetic trees were built including them and also sequences from Mdg1 retrotransposons, which were to be used as outgrups. The results are shown in Figure 1 and the aligned sequences can be found in Supplementary File 2. The
A first result that can be deduced from Figure 1 is that the suggestion that \textit{GIN1} is a mammalian-specific gene (Lloréns and Marín 2001) was incorrect. The phylogenetic data indicated the presence of a \textit{GIN1} gene in the birds \textit{Gallus gallus} and \textit{Taeniopygia guttata} and in the lizard \textit{Anolis carolinensis}. This result was confirmed by BLAST searches at the Ensembl Genome Browser. In those three species, the genes that are located at both sides of the \textit{GIN1-like} sequences are the same that are found in mammals around the \textit{GIN1} gene: \textit{HISPPD1} and \textit{PAM}. These findings, together with the apparent lack of \textit{GIN1} sequences in amphibians and fishes (but see below) suggests that \textit{GIN1} emerged early in amniote evolution, perhaps 300 millions of years ago (Ponting 2008). In birds, \textit{GIN1} resides in the \textit{Z} chromosome. The available information of the \textit{Anolis} genome does not allow to establish in which chromosome is located \textit{GIN1} in that species.

A second notable result that emerged when analyzing these sequences is that there is a second related gene in vertebrates, which I have logically called \textit{Gypsy Integrase 2 (GIN2)}. The first hint that a second gene existed derived again from the phylogenetic analyses. It became clear that a large set of unknown sequences from a variety of vertebrates (just one sequence per species) formed a monophyletic group (Figure 1). Detailed analyses of the structure and chromosomal positions of these sequences indeed indicated that they correspond to a novel gene, a \textit{GIN1} paralog. First, no structural or sequence evidence for \textit{GIN2} integrases being contained in a retrotransposon or any other type of repetitive element, as a DNA transposon, was found. Second, \textit{GIN1} and \textit{GIN2} have similar intron-exon structures, as will be detailed below. Finally, respect to their chromosomal positions, and as
described above for GIN1, the same two genes (OGFOD2 and ABCB9) are found adjacent to GIN2 in the birds Gallus gallus and Taeniopygia guttata and in the fishes Danio rerio and Fugu rubripes, a strong evidence against GIN2 being part of a mobile sequence. For the rest of species that contain GIN2, it was not possible to confirm this result due to lack of data. In any case, the combined evidence indicates that GIN2 is an ancient gene, perhaps even more ancient than GIN1 given its presence in fishes, and that GIN1 and GIN2 are paralogs. The fact that GIN2 was not discovered before is due in part to the fact that, although it is present in some marsupials (Monodelphis domestica, Macropus eugenii) whose genomes only recently have been sequenced in detail, GIN2 has been lost in eutherian mammals. Clearly, no GIN2 sequences were available when we found GIN1, given that they would have been impossible to miss.

The third main result derived from the phylogenetic analyses was the finding of several ensembles of closely related sequences, each ensemble belonging to a single species. Four groups of sequences from the cnidarian Hydra magnipapillata, a group from the insect Acyrthosiphon pisum and some sequences from the mollusk Aplysia californica were detected. Given the similarity of GIN1 protein and retrotransposon integrases, I first thought that they corresponded to Gypsy/Ty3 retrotransposons. However, a close inspection of the data showed that these sequences did not actually derive from retrotransposons. In several cases, it was unambiguously determined that the integrase-encoding region is included in sequences with the typical structure of DNA transposons, a novel type of elements that I have called GIN. Supplementary File 3 contains the sequences of canonical copies of the full-length elements described below (summarized in Table 1).
The *Hydra* sequences were the first analyzed, given that it would be important to find potential progenitors of *GIN* genes in such animals, which belong to a basal lineage of the metazoan tree. By combining TblastN, BlastX, TblastX and ORF Finder analyses, it was determined that all the *Hydra* sequences corresponded to copies of just four different DNA transposons, which I have called Gino, Gina, Ginny and Ginés. The structural data are conclusive (summarized in Table 1, in which the features of canonical elements are detailed, and Figure 2). First, multiple similar copies were found, and when the longest ones were compared, it was possible to establish that they ended in characteristic 40 to 111 bp-long terminal inverted repeats. These inverted repeats are element-specific, their sizes and sequences are different for each of the four elements (Table 1). Second, as is also typical in DNA transposons, direct duplications caused by the insertion of the elements, in this case of 4 nucleotides (often CCGG), were in most cases found at both sides of the terminal repeats. Finally, retrotransposon proteins or protein domains, such as reverse transcriptases, were never detected in close proximity to the GIN-like integrases that characterize these elements.

By combining the results of different types of BLAST analyses and ORF Finder results with data obtained with InterProScan and GenomeScan (see Material and methods section), the most likely structure of the coding regions of these elements was determined (Figure 2). The four elements are similar. First, in all cases, the ORF encoding the GIN1-like integrase sequences starts very close to one of the extremes of the element (shown as 5’ end in Figure 2). Second, also in all elements, introns were deduced to exist. However, some significant differences were also detected. Surprisingly, the longest element, Gino, contains a second ORF (ORF2) that may encode a transposase, very similar to those found in elements of the Tc1-mariner superfamily. This finding is discussed in detail below. On the other hand, in the four elements, a protein domain, related to cysteine proteases, was
detected, C-terminal to the integrase sequences. However, although Gino, Gina and Ginny contain a domain clearly related to Ubiquitin-like cysteine proteases (ULPs; Hay 2007), it turns out that Ginés contains a totally different domain, this time obviously similar to Otubain cysteine proteases, a type of deubiquitinating enzymes (Kim et al. 2003). Current classifications establish that ULPs and Otubain proteases are only distantly related (see, e. g. the MEROPS classification at http://merops.sanger.ac.uk/; Rawlings et al. 2008) and indeed the protease sequences deduced from Gino, Gina and Ginny are similar, and very different from the ones in Ginés. Critical amino acids typical of those types of cysteine proteases, such as the His-Asp-Cys catalytic triad of ULPs (Hay et al. 2007) and the Cys - His catalytic couple of otubains (Nanao et al. 2004) were found intact in the protein domains deduced for the GIN elements.

The apparent presence of two ORFs in Gino elements was puzzling. Three potential explanations for this fact were examined. First, the elements could actually contain both ORFs. Second, it could be an artifact caused by the close proximity of Tc1-like and Gino elements in the canonical copies examined. Third, it was possible for a Tc1 element to be preferentially inserted within Gino sequences giving rise to an apparent ORF2. The second potential explanation was quite easily refuted: in no less than 20 cases, the sequences corresponding to the Gino integrases and the sequences corresponding to the Tc1 transposases were found to be adjacent. Moreover, it was possible to reconstruct 12 complete or almost complete Gino elements that contained both integrase and transposase sequences (Supplementary File 4). Therefore, the presence of the two ORFs together was not a casual finding. The third potential explanation is more difficult to refute, but it is unlikely, given that Tc1 sequences as the ones detected within Gino elements were not found isolated and no inverted repeats around the Tc1 sequences were detected within Gino
elements. This impossibility of characterizing the putative Tc1 element associated with Gino contrast with how easy was to establish the complete structure of other Tc1 elements present in *Hydra magnipapillata*. For example, two elements that encoded transposases similar to those in Gino were found (Type A: Acc. Nos. ABRM01018993.1, XP_002158263.1; identity with Gino Tc1 transposase sequences: 44%; similarity: 65%. Type B: Acc. Nos. ACZU01091993.1, XP_002170130.1; identity and similarity with Gino Tc1 sequences: 55% and 73%, respectively). In both cases, their sizes (1841 and 1739 bp respectively) and their inverted repeats (27 and 32 bp-long respectively) were characterized without difficulty. In summary, all these results indicate that Gino elements may contain as an integral part of their structure an ORF2 encoding a Tc1-like transposase.

The analyses of the *Aplysia californica* sequences led to the characterization of another DNA transposon, Ginebra. Ginebra elements have 119 bp long inverted repeats and encode a single protein, which contains just an integrase domain. They also generate 4 bp-long direct duplications that can be observed at both sides of the inverted repeats. This time introns were not detected. Details are summarized in Table 1. Also, the *Acyrthosiphon pisum* sequences detected most likely belong also to DNA transposons (Ginger elements). Unfortunately, no full-length copies are currently available so it was impossible to characterize the ends of the elements. However, the presence of a large amount of copies and the lack of any other retrotransposon-related sequences argues against them being either host genes or retrotransposons. Finally, a single intact full-length sequence was found in *Branchiostoma floridae* that may also correspond to a GIN transposon (Ginton element). 75 bp-long inverted sequences and potential 4 bp direct repeats were found around this sequence, which encodes for an intronless integrase. Moreover, in the databases, 3 additional partial copies that encoded fragments (61 to 113 amino acids) of very similar
integrases were detected. The available information for these putative elements is also summarized in Table 1.

Most sequences in Figure 1 corresponded to one of the classes already described: \(GIN1, GIN2 \) genes or GIN elements in different species. However, a few more were typical of Gypsy retrotransposons. In fact, a lineage of arthropod retroelements more similar to \(GIN1 \) than Mdg1 retrotransposons was found, and that is the reason why it has been included in Figure 1. Finally, a few additional sequences are difficult to classify. Two intriguing \(GIN \)-like ORFs were found in the urochordates \(Ciona savignyi \) and \(Ciona intestinalis \). The available evidence suggest that they may also correspond to \(GIN \) genes. They are single-copy sequences and no obvious terminal or direct repeats, or other types of transposon- or retrotransposon-related sequences, were detected around them. Additional evidence against transposition is the fact that one of the genes adjacent to these \(GIN \)-like sequences is common in \(C. intestinalis \) and \(C. savignyi \). Moreover, the location of several introns is the same in these \(GIN \)-like sequences, \(GIN1 \) and \(GIN2 \) (Figure 3). However, no genes obviously related to those found around \(GIN1 \) or \(GIN2 \) in vertebrates were found adjacent to the place where these \(Ciona \) sequences are located. Also, their relationship with either \(GIN1 \) or \(GIN2 \) is not significantly supported by bootstrap analyses (Figure 1). Therefore, whether they are bona fide \(GIN \) genes or not is still an open question. The other three orphan sequences (from the teleost fishes \(Pimephales promelas \) and \(Gadus morhua \) and the lamprey \(Petromyzon marinus \); Figure 1), were derived from cDNAs and the corresponding genomic sequences are not available, so no further characterization was possible. The \(Pimephales \) sequence is particularly interesting, given that it is quite similar to \(GIN1 \) genes. Therefore, it is not impossible that \(GIN1 \) sequences may be present in some
fish species, either corresponding to active genes or pseudogenes. If this is confirmed, it would mean that GIN_1 is even older than it was deduced from the data presented above.

Figure 1 shows that the phylogenetic analyses put together GIN_1 and GIN_2 genes and GIN transposons or likely transposons in $Hydra$, $Aplysia$ and $Acyrthosiphon$ in a highly supported monophyletic group, suggesting that GIN_1, GIN_2 and the GIN DNA transposons have a common origin. Further data supporting the close evolutionary link between these genes and transposons are presented in Figure 3, which describes the position of the introns in the different GIN sequences. As it may be expected for paralogs, GIN_1 and GIN_2 have similar intron-exon structures. Identical positions for four introns were detected in both genes (black triangles in Figure 3). The same applies for the GIN-like sequences in $Ciona$ (Figure 3). In addition, and most significantly, similar positions were also detected in several cases in $Hydra$ GIN transposons. Particularly, Gino shares the position of three introns both with GIN_1 and GIN_2 (see also Figure 3). These results further suggest the existence of a common ancestor of both the current GIN elements and the GIN genes. That ancestor must have included an integrase coding region with introns. Figure 4 shows in detail the great similarity among GIN integrases of genes and transposons and also that the integrases of $Hydra$ GIN elements may be active, given that they contain typical C_2H_2 and DDE signatures critical for integrase function (Haren et al. 1999). However, it is unlikely that the GIN_2 protein may act as an integrase, given that it lacks the three critical acidic residues of the DDE signature.
Discussion

The main result of this work is the characterization of the close similarity between \textit{GIN} genes and a novel type of DNA transposons, the GIN elements. We may ask now what is the most likely evolutionary history that explains their similarities. The facts to consider are: 1) No known retrotransposons are similar enough to \textit{GIN1} or \textit{GIN2} to explain their origin; 2) On the contrary, GIN transposons are very similar in structure (related intron positions, Figure 3) and sequence (Figures 1, 4) to \textit{GIN} genes; 3) Their current phylogenetic range suggests that GIN DNA transposons, present in both cnidarians and protostomes, have an older origin than either \textit{GIN1} and \textit{GIN2}, which are restricted to chordates, perhaps even to vertebrates. It is therefore very logical to hypothesize a single, common ancestor that provided the integrase sequences found today both in GIN elements and \textit{GIN} genes and that \textit{GIN} genes, recently evolved, derive from the more ancient GIN DNA transposons. The possibility of GIN elements to have a broad phylogenetic range due in part to horizontal transmission must be taken into account in this context. However, in my opinion it does not change the fact that, with the current information, the other possible evolutionary histories are difficult to envisage. For example, an alternative hypothesis would be that GIN elements and \textit{GIN} genes emerged independently from different retrotransposons. However, in that case neither their sequence similarity nor their related intron-exon structure are easy to explain. A third potential explanation is that GIN elements derive from \textit{GIN} genes. However, we should then postulate either 1) that the genes derived directly from a retrotransposon, were present in ancient animals and later were independently lost several times while novel DNA transposons emerged from these genes and persisted in those same lineages, or that 2) GIN elements originated recently in vertebrates/chordates and later they spread by independent horizontal transmissions to several, very different, lineages of
animals. Although formally possible, the first option seems very unlikely. The second possibility, although more logical, is also unlikely. This is showed by the fact that the four different elements described in *Hydra* cannot be aligned along their lengths and even within a particular type of element, the similarity among copies is quite low (e.g. Gino copies in Supplementary File 1 are just 57 – 86 % identical). This suggests an ancient origin and argues against recent horizontal transfers. In summary, the simplest hypothesis is that GIN DNA transposons are genetic elements that emerged long ago by an evolutionary accident leading a retrotransposon integrase to be used as a transposase, a singular event that probably occurred in early animal evolution. Later, they contributed to the emergence of GIN genes by multiplying in animal genomes such integrase sequences until one of them was by chance coopted to work as a common gene in the genome of a chordate. According to this view, GIN transposons would be an evolutionary “missing link” between retrotransposons and GIN genes.

In summary, I postulate that GIN genes derive from the “domestication” of GIN transposons. Whether this domestication occurred just once, generating an ancestral GIN gene that later become duplicated, or, alternatively, occurred twice, independently originating the two genes that we found today in vertebrates, is not totally clear. The first option seems more likely, especially due to the similarity of the intron-exon structures of both GIN genes. However, the data is still too fragmentary to be certain. For example, the fact that the integrase of some GIN transposons is more similar to those in GINI, while others are more similar to GIN2 (Figure 1) argues in favor of two independent domestications. True, that evidence is quite weak.
It is most interesting that previous studies suggest that the evolutionary path described here may have occurred in parallel in a totally unrelated case. Wells (1999) described the Tdd-4 DNA transposon of *Dictyostelium discoideum*, a 3.8 Kb element encoding an integrase with clear relationships with retrotransposon integrase domains. In later works, Gao and Voytas (2005) and Feschotte and Pritham (2005) established that a group of proteins called c-integrases were very similar to the integrase of Tdd-4 but just distantly related to those in Gypsy/Ty3 retrotransposons and retroviruses. C-integrases were found in multiple species, and it was concluded after structural analyses that many of them were actually included in giant DNA transposons called Mavericks or Polintons (Feschotte and Pritham 2005; Kapitonov and Jurka 2006; Pritham et al. 2007). The parallelism between the origin of GIN transposons and the origin of the Tdd-4 and the Maverick/Polinton elements is obvious: both types of elements emerged from the cooption of similar integrases. The question is whether this parallelism can be even more exceptional, given that there are DNA sequences in mammalian genomes that encode for c-integrases but so far have not been found to be included in any DNA transposon (Feschotte and Pritham 2005). These authors suggested that they could correspond to host genes derived from Mavericks/Polintons. If this is indeed the case, it would be a second independent case of a common evolutionary route for domestication of an integrase: from retrotransposons/retroviruses to host genes through an intermediate phase as part of DNA transposons. It is also interesting in this context the suggestion by Kapitonov and Jurka (2006) that the integrases of Mavericks/Polintons may have been coopted from a Tdd-4-like DNA transposon.

GIN transposons are quite peculiar. In some ways they are examples of a novel type of element, given that they have structural features and encode types of proteins that have never been described so far in other DNA transposons. However, they have clear
relationships to other, already known, types. First, they are structurally related to Tdd-4, which also contains an integrase-coding region with introns (Wells 1999). Second, the presence of ULP cysteine protease domains in the proteins of several Hydra GIN elements also have an interesting precedent: DNA transposons encoding ULPs (as independent proteins) have been detected in plants (Hoen et al. 2006; van Leeuwen et al. 2007). The potential functions of the ULP activity (or the Otubain protease activity in the case of the Ginés element) are obscure. How and why Gino elements incorporated a second ORF, encoding a Tc1 transposase, and how the integrase/cysteine protease and the Tc1 transposase activities may collaborate for Gino replication is also puzzling and deserves further study. In the next years, we can expect to increase our collection of these curious elements in other animal species, so perhaps several of these questions will be soon solved. Finally, the main mystery, the function of GIN genes in vertebrates, persists. In our original report, we suggested that GIN integrases could be part of a defense mechanism against retrotransposons and retroviruses, perhaps contributing to the elimination of Gypsy/Ty3 elements in mammals (Lloréns and Marín 2001). Now, it is possible to postulate that they may have contributed in the past to the control and elimination not only of retroelements but also of GIN DNA transposons, which are apparently absent in all species with GIN genes. Perhaps they are still involved in some specific type of repetitive element control in modern genomes. However, our knowledge of domesticated genes is so incomplete that indeed it would not be a surprise to find them performing totally new host-specific functions.

Acknowledgements

This project was supported by grant BIO2008-05067 (Programa Nacional de Biotecnología; Ministerio de Ciencia e Innovación. Spain).
Supplementary material:

Supplementary file 1: Microsoft Word file. NJ tree including representative Gypsy/Ty3 and Copia/Ty1 retrotransposons, retroviruses and retrovirus-related sequences (e. g. CGIN1 genes; Marco and Marín 2009), the integrase of the Tdd-4 transposon (Wells 1999, and see main text) and all the GIN1-related sequences detected in the databases. All the sequences excluded from the groups detailed in the figure are Gypsy/Ty3 elements.

Supplementary file 2: Microsoft Word file with the integrase sequences used to build Figure 1, in Fasta format.

Supplementary file 3: Microsoft Word file that includes the Sequences of the GIN canonical elements of Hydra and Aplysia.

Supplementary file 4: Microsoft Word file containing 12 full-length/almost complete Gino elements, in Fasta format. All these long Gino copies contain both integrase and transposase sequences. Integrase sequences correspond to positions 250- 5440 in this alignment and Tc1 transposases are encoded by nucleotides in positions 7280-8630.
References

Figure legends

Figure 1. Summary of the phylogenetic analyses. GIN_1, GIN_2 and possibly the GIN-like sequences found in $Ciona$ correspond to genes, while Gino, Gina, Ginny, Ginton, Ginebra, Ginés and probably Ginger are GIN DNA transposons (see main text). Results from NJ, MP and ML analyses were congruent enough as to be shown together in a single tree (in the figure, the NJ tree obtained). Numbers refer to bootstrap support (NJ/MP/ML), in percentages. For simplicity, only the values obtained for internal branches that were supported by the three methods of phylogenetic reconstruction are shown. Notice the high level of support for the branch containing GIN genes and GIN elements. The accession number of each sequence is detailed after the name of the corresponding species.

Figure 2. Structures of the $Hydra$ GIN elements. Triangles at both sides indicate the terminal inverted repeats. Arrows indicate the direction in which the proteins are encoded.

Figure 3. Intron-exon structures of GIN genes (GIN_1, GIN_2 and the GIN-like gene in $Ciona intestinalis$) and $Hydra$ GIN elements. Triangles indicate the positions of the introns along the coding region. Black triangles indicate that the position is the same found in GIN_1. The similarity of GIN_1, GIN_2 and the GIN transposons, especially Gino, is clear.

Figure 4. Core integrase domains of representative sequences for GIN_1, GIN_2 and GIN transposons. The integrase of the $Drosophila melanogaster$ 412 element (an Mdg1 retrotransposon) is also shown. The critical C_2H_2 and DDE residues are indicated. Notice that GIN2 integrase lacks the DDE motif.
Figure 2. Marín
Figure 3. Marin

GIN1

GIN2

GIN-like

GINO

GINA

GINNY

GINÉS

100 amino acids
Table 1. Features of canonical GIN elements

<table>
<thead>
<tr>
<th>Element name</th>
<th>Species</th>
<th>Accession number for canonical element (start-end of the element)</th>
<th>Size (Kb)</th>
<th>Size of inverted repeats (bp)</th>
<th>Coding potential</th>
<th>Approximate number of sequences related to the canonical element in the current databases</th>
<th>Site duplications</th>
</tr>
</thead>
</table>
| GINO | Hydra magnipapillata | ABRM01009625.1 (16028-9445) | 6.6 | 45 | ORF1: Integrase/Ulp1-like cysteine protease
ORF2: Tc1 transposase-like | >100 | 4 bp |
| GINA | Hydra magnipapillata | ABRM01027140.1 (3432-9270) | 5.8 | 40 | Integrase/Ulp1-like cysteine protease | 45 | 4 bp |
| GINNY | Hydra magnipapillata | ABRM01018334.1 (15616-12073) | 3.5 | 111 | Integrase/Ulp1-like cysteine protease | 30 | 4 bp |
| GINÉS | Hydra magnipapillata | ABRM01000799.1 (23816-26452) | 2.6 | 82 | Integrase/Otubain-like cysteine protease | >100 | 4 bp |
| GINEBRA | Aplysia californica | AASC02016817.1 (36379-31560) | 4.8 | 119 | Integrase | 25 | 4 bp |
| GINTON | Branchiostoma floridiae | ABEP02034879.1 | 4.7 | 75 | Integrase | 4 | 4 bp? |
| GINGER | Acyrthosiphon pisum | Most complete elements:
ABLF01044789.1 (2736-5123)
ABLF01050592.1 (2972-605) | ≥2.3 | Not determined | Integrase | >100 | Not determined |