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The sampling variance of nucleotide diversity or branch length in a phylogenetic 
tree constructed by any distance method provides a criterion to judge whether a 
deduction or an inference made from data is statistically significant. However, 
computation of the sampling variance is usually tedious, particularly when the 
number of operational taxonomic units (OTUs) or DNA sequences is large, and 
must rely on computers. Recently, Nei and Jin ( 1989) have developed a computer 
algorithm, but it can be applied only to a simple substitution model. In this paper, 
we derive simple formulas for the minimum and maximum values of the sampling 
variance, which are independent of underlying substitution models. Application 
of these formulas demonstrates satisfactorily accurate estimates of the sampling 
variances and therefore their practical use. 

Introduction 

The sampling variance we are going to consider is that due to estimation error 
of nucleotide substitutions. In the method of Nei and Jin ( 1989; also see Nei et al. 
1985)) it does not matter whether a sample of DNA sequences is drawn randomly, 
but it does depend on how substitutions occur among the four nucleotides, and it is 
assumed that they change equally likely (Jukes and Cantor 1969). In reality, however, 
nucleotide changes do not necessarily occur at random, and this has led to the devel- 
opment of many elaborate substitution models (e.g., see Nei 1987, pp. 64-73, and 
references therein). If the method of Nei and his colleagues has difficulty in being 
accommodated to unequal substitution rates, its application is restricted virtually to 
the simplest substitution model. Obviously, it is not consistent to use an elaborate 
substitution model for converting the proportion of nucleotide differences per site (p) 
to the estimated number of substitutions per site and simultaneously to use the Jukes- 
Cantor model for computing the sampling variance. In the present paper, we would 
like to present a simple method that can be applied to any substitution model. Although 
it provides only the minimum and maximum values of the sampling variance, the 
computation involved is easy, and the range between the minimum and maximum 
variances is satisfactorily small. The procedure is similar to that of Nei et al. ( 1985 ), 
but the accuracy turns out to be better, for the reason given later. 

Model and Analysis 

In most nucleotide substitution models so far proposed (for review, see Kimura 
1983, pp. 90-97; Nei 1987, pp. 64-73), it is assumed that substitutions follow (sta- 
tionary) Markov processes. In other words, the interval between two successive sub- 
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stitutions per site is exponentially distributed whether substitutions occur at random 
or with some compositional bias among the four nucleotides. An immediate conse- 
quence of this is that the number of substitutions at the kth site (&) necessarily 
follows a Poisson distribution ( Takahata, 199 1; also see Tavare 1986 ) . Here we assume 
the Poisson to be appropriate. If we define 

as the mean number of substitutions per site, taken over n nucleotide sites compared, 
then the value of D is a random variable, and the variance is 

V(D) = d/n, (1) 

where the lowercase d stands for the expectation of D. 
It would be a simple matter to compute the sampling variance of nucleotide 

diversity or that at any node in a phylogeny if we could use equation ( 1) immediately. 
In practice, however, it is virtually impossible to know the actual number of substi- 
tutions per site, so the sampling variance (among sites) must be estimated from the 
same equation that provides the relationship between p and D (Kimura and Ohta 
1972; Kimura 1980; Tajima and Nei 1984; Nei et al. 1985; Nei 1987, pp. 64-73). 
The equation for D for two DNA sequences may be written as 

D =.RP). (2) 
The sampling variance of D can then be estimated by 

v(D) = ~(1 -P) d_!-(p) 2 
n 1 1 d’ (3) 

(see Sertling 198 1, p. 122). In the Jukes-Cantor model, f(p) = - $ ln( 1 - !p), so 

that 

V(D) = 9P(l -P) 
n(3 - 4p)2 (3a) 

(Kimura and Ohta 1972). If the difference p is divided into more than one type of 
difference, such as transitions and transversions, an appropriate multinomial sampling 
distribution and partial derivatives must be used to derive the variance. For instance, 
in Kimura’s ( 1980) model, where transition and transversion types of differences are 
distinguished as P and Q, respectively, the sampling variance is given by 

V(D) = i [(a2P + b2Q) - (aP + be)*] ; 

1 
a=1-2P_Q’ (3b) 
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In any case, tediousness arises when we need to compute the variance of distance, 
which is defined appropriately from multiple sequences sampled from either a single 
or different species. In the former case, nucleotide diversity (rc) for m DNA sequences 
sampled from a single species may be defined as 

7C= (4) 

where D, is the estimated number of nucleotide substitutions per site between the ith 
andjth sequences (Nei and Tajima 198 1). The variance of Tc [V (rc)] is then estimated 
as 

V(A) = 4[m(m - l)]-*[ 2 V(Dij) + 2 2 COV(Dij, Diyt)] (5) 
i<j iJ i ‘<j’ 

(Nei and Jin 1989). 
When two different species are involved, it is often necessary to compute the 

mean distance between two different sets of DNA sequences. Suppose that there are 
two sets, A and B, which contain r and s sequences, respectively. We consider the 
mean (intercluster) distance between A and B ( D*B). This mean distance is defined 
as 

where Do is the distance between the ith sequence in A and the jth sequence in B. 
The variance of DAB is given by equation ( 7 ) of Nei et al. ( 1985 ) : 

v(DAB) = (r-s)2 ij L [ 2 V(Dij) + 2 c Cov(Du, Dpjt)]. (7) 
i#i’ j#j’ 

In equations ( 5 ) and ( 7 ) , V ( Dij) can be computed from equation ( 3a), equation ( 3b), 
or similar equations, but computation becomes tedious when m or I and s are large, 
because the number of covariance terms is so large in this case. 

However, as shown in the Appendix, it is easy to evaluate the range of V( 7~) and 
V(D). The minimum and maximum values of V(K) are, respectively, 

Vmin(7C) = 4[m(m - l)]-* 
[ 
b F II&& + C V(e,) 

iJ I 
(8a) 

and 

Vmax(7c) = 4[m(m - l)]-* “‘“2_ ‘) C V(e,)] . (8b) 
icj 

In the above, V( eU) = V( Dij) - ‘/,d,, as given by equation (A5) in the Appendix. 
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This quantity accounts for the deviation of V( DO) from the sampling variance expected 
from the pure Poisson, and manipulation of V( eJ makes our procedure more accurate. 
Wk in equation (8) is the number of times in which the kth branch appears in all 
pairwise comparisons of m sequences. For instance, consider the inter-nodal branch 
of length d, in figure 1. Since this branch is involved only when branch 1 or 2 is 
compared with the remaining branches and since there are four cases for each such 
comparison, the value of W7 associated with this branch becomes 8. Similarly, we can 
easily evaluate the value for any branch. The values of W’, for the tree (including a 
broken branch) in figure 1 are WI = W, = W, = W, = W, = WI0 = W6 = 5, W, 
= I+‘, = 8, and W, = 9 in all pairwise comparisons. The range of the sampling variance 
becomes 

Vmax(~) - Vmin(nc) = 2 1 1 
m(m- 1) 

[& - -dw] I CT& - i4v, n n 

where we defined 
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FIG. I.-UPGMA tree for (solid lines only) five mtDNA sequences of primate (Brown et al. 1982) 
and (including the broken line) six mtDNA sequences of 2,3 16 nucleotides sampled from Drosophila mel- 
anogusfer subgroup (Satta and Takahata 1990). In the latter example, d, = dr = 0.0063, ds = 0.0142, 4 
= 0.0167, dS = 0.0183, & = 0.0240, d7 = 0.0079, da = 0.0025, dg = 0.0015, and dlo = 0.0058. d is the 
number of substitutions per site per year. Each W stands for the number of times that a particular branch 
appears in all pairwise comparisons when V(n) and DAB are computed. 
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and 

dw= m(m2_ 1) 7. do * 
I<J 

It is thus clear that, as m increases, the range becomes larger but its extent is bounded 
by the value of the rightmost term. 

Similarly, the minimum and maximum variances of V(D,n) can be obtained 
as, respectively, 

Vmin(DAB) = (rs)-’ 2 V(Do) + y C du - G T d;;r - G c djjp] (9a) 

and 

V,,(DAa) = (KS)-~[~S 2 V(Do) - c ,T diit - G 5 d,tI 
ij 1-a ’ J-ZJ‘ 

(9b) 

(see the Appendix). In the above, diit and d,r are the expected intracluster distances 
in A and B, respectively. The computation of equation (9) is more straightforward 
than that of equation (8 ) , and there is no need to count II’, . Note that the intra- and 
intercluster distances D are given by equation (2) and that the sampling variance 
V( Dij) is given by equation ( 3). For example, when sequences 1 and 2 belong to 
cluster A (i.e., 1, 2 E A & r = 2) and when sequences 3 and 4 belong to B (i.e., 3, 4 
E B & s = 2)) equations (9a) and (9b) simply become, respectively, 

+ -& (d,j + du + dz, + d24) - & (dn + d34) 

and 

V,,,(DAa) = $[V(Di3) + V(Di4) + v(D23) + v(D24)I - & (d12 + d34) * 

As mentioned, the maximum variance was also considered by Nei et al. ( 1985). A 
difference, however, exists between their formulation and ours. That is, while the 
present method takes full account of correlation produced by the underlying Poisson 
process, Nei et al’s does not, and the last two negative terms in the above V,,( DAB) 
expression are ignored [see eq. (22) in Nei et al. 19851. Obviously, neglecting such 
terms that are due to negative correlation overestimates V,,, (DAB). As in the case of 
111, the range of the sampling variance of DAB beCOmeS slightly larger as s and I inCreaSe: 

V,,-,,,(DAB) - Vmin(DAB) = 1 - i [o;B 
1 1 - ;&.I , 
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where 

and 

Numerical Examples 

We apply equations (8a) and (8b) to six different mitochondrial DNA (mtDNA) 
sequences, each with 2,3 16 nucleotides, which were sampled from the Drosophila 
melanogaster subgroup (one from D. melanogaster, three from D. simulans, two from 
D. mauritiuna, and one from D. sechellia sequences) (Satta and Takahata 1990). 
Here we are interested in rt within this subgroup rather than from a single species. 
The distance matrix among the six sequences can be computed from table 1 of Satta 
and Takahata ( 1990) and generates a UPGMA tree of which the topology is identical 
with that shown in figure 1. If we use equation (3a), we estimate rc as 0.037 1 and 
estimate the standard error m as 0.0025 (Nei and Jin 1989). On the other hand, 
equation (8) estimates m as 0.0024 and estimates m as 0.0026, with 
a set of Wk and dk values for 10 branches of the UPGMA tree in figure 1. Thus the 
simple equations (8) give a narrow range of V( rc) value and allow one to compute 
an accurate sampling error of rt in a simple way. 

To show how to compute the standard errors of branch lengths, again consider 
the tree in figure 1 (solid lines only). According to Nei et al. ( 1985 ) , we define branch 
lengths (b;s; i = 7-10 in fig. 1) as b7 = YzD12 [corresponding to DAB with ( 1 E A; 
2 E B)], b8 = l/4( D13 + Dz3) [corresponding to DAB with ( 1, 2 E A; 3 E B)], b9 
= $,( D14 + Dz4 + DS4) [corresponding to D AB with ( 1, 2, 3 E A; 4 E B)], and blo 
= %(D,s + 45 + Ds5 + D45) [corresponding to DAB with ( 1, 2, 3, 4 E A; 5 E B)]. 
From equation (9b), we have the maximum variances of hi’s as 

V(b7) = ;V(D,z), v(bs) = @(D,,) + v(D23)l - & d12 ; 

V(b9) = ;[V(D,,) + V(D24) + V(D34)l - & (d,2 + d3 + d23) ; 

V(b,o) = ;[V(&) + V(D25) + V(D35) + V(D45)l 

- & (d,z + 43 + 44 + d23 + d24 + dx). 

Similarly, we can compute the minimum variances of bts from equation (9a). 
As an example of the sampling variance of branch length in a phylogenetic tree, 

consider the UPGMA tree in figure 1 (solid lines only), which was obtained from 
Brown et al’s ( 1982) mtDNA sequence data (895 bp) for human (OTU l), chim- 
panzee (OTU 2)) gorilla (OTU 3)) orangutan (OTU 4)) and gibbon (OTU 5 ) (see 
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Nei 1987, pp. 294). On the basis ofthe Jukes-Cantor model, Nei et al. ( 1985) estimated 
the bls as b7 = 0.04 .0563, b9 = 0.0937, and b,,, = 0.1073 and estimated the 
sampling errors o = o7 = 0.0054, o8 = 0.0052, o9 = 0.0071, and olo = 0.0074. 
We can compare them with the minimum and maximum values for the four branches; 
for the four branches, these maximum and minimum values are, respectively, o7 
= 0.0054 and 0.0054 for branch 7, crs = 0.0052 and 0.0054 for branch 8, o9 = 0.0068 
and 0.0073 for branch 9, and olo = 0.0070 and 0.0077 for branch 10. Although there 
are some differences between the minimum and maximum values, they are quite 
narrow, and, as IZ increases, they become even smaller. The main source of the sampling 
variance is the limited number of nucleotides compared, rather than the sample size. 

Computation of Vmin and V,, is simple enough to do with a small calculator. 
Furthermore, for large values of n the difference between Vmin and V,,, is so small 
that they provide useful information. To be conservative, however, one may use V,, . 
It is also clear that equations (8) and (9) can be applied directly to any substitution 
model. The main reason that we have used the Jukes-Cantor model in the two examples 
is to compare Vmin and V,, with the exact variance. This comparison is possible only 
under the Jukes-Cantor model. 

APPENDIX 

Since the derivation of equation (8) is essentially the same as that of equation 
(9), we derive equation (9) only. Let Dk be the actual number of nucleotide substi- 
tutions per site that occurred in the kth branch. Then 

(Al) 

where e, is the error caused by an estimation method and where wijk = 1 if the kth 
branch connects the ith and jth sequences and where wok = 0 otherwise. Since Dk 
follows a Poisson distribution, 

1 
V(DU) = - c Wijkdk + v(Q), 

nk 
(AZ) 

where dk is the expectation of Dk and where V( eij) is the variance Of t?ij. The covariance 
between Do and Diljt is given by 

COV(D~, Diyf) = i F WokWi7tkdk + COV(fQ, ei?g) . (A3) 

Substituting equations (A2 ) and (A3 ) for the variances and covariances in equation 
(7), we have 

1 
v(DAB) = (rs)2 n k - [’ c widk •k 2 v(eu) •k 2 COV(eo, eiy!)] , (A4) 

ij ij#i’j’ 

where I+$ = Cij wok. V( eU) can be estimated as 

V(e,) = V(DU) - idU, (A5) 

since the expectation of Du is dti = ck Wukdk. 
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Although Cov( eti, eiTj#) cannot be obtained, we can evaluate Vmin (DAB) and 
Vmax(DAB), by assuming that COV( eu, ei#jg) = 0 and that COV( eij, eifj*) = V(eij), 
respectively; they become 

V,i”(DAB) = (rs)‘[i F I+%& + C V(eti)l 
ij 

V,,(DAB) = (r.sp2[i F Widk + rs Z V(q)1 
ij 

(A7) 

(also see Nei et al. 1985 ). For TC, the same procedure can be used, although the number 
of sequence comparisons is somewhat different. In this case, equations ( A6 ) and ( A7 ) 
lead to equations (8a) and (8b), respectively. 

We may rewrite equations (A6) and (A7 ) in more convenient forms in terms of 
intracluster distances. Let the kth branch in A (B) separate r (s) sequences into ylk 
and r (s) - nk sequences. The expectation of Zi<ir Diit is 

s2 C diir = S2 C C Wiitkdk = S2 c nk(r - nk)dk = z (rswk - w$)dk (‘48) 
i<i ’ k ici’ k k 

if A contains the kth branch, and it is 

r2 2 d,t = 2 (rswk - wz)dk 
jcj’ k 

(A9) 

if B contains the kth branch. In the above, wk = nfl or wk = (r - nk)S for equation 
(A8), and wk = r&r or wk = (s - nk) r for equation (A9). Using the expression 
Wzdk in equations (A8) or (A9), we can rewrite Vmin(DAB) and V,,,(DA~) as in 
equations (9a) and (9b). 
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