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Abstract

Compositional heterogeneity of sequences between taxa may cause systematic error in phylogenetic inference. The
potential influence of such bias might be mitigated by strategies to reduce compositional heterogeneity in the data set or
by phylogeny reconstruction methods that account for compositional heterogeneity. We adopted several of these
strategies to analyze a large ribosomal protein data set representing all major metazoan taxa. Posterior predictive tests
revealed that there is compositional bias in this data set. Only a few taxa with strongly deviating amino acid composition
had to be excluded to reduce this bias. Thus, this is a good solution, if these taxa are not central to the phylogenetic
question at hand. Deleting individual proteins from the data matrix may be an appropriate method, if compositional
heterogeneity among taxa is concentrated in a few proteins. However, half of the ribosomal proteins had to be excluded to
reduce the compositional heterogeneity to a degree that the CAT model was no longer significantly violated. Recoding of
amino acids into groups is another alternative but causes a loss of information and may result in badly resolved trees as
demonstrated by the present data set. Bayesian inference with the CAT–BP model directly accounts for compositional
heterogeneity between lineages by introducing breakpoints along the branches of the phylogeny at which the amino acid
composition is allowed to change but is computationally expensive. Finally, a neighbor joining tree based on equal input
distances that consider pattern and rate heterogeneity showed several unusual groupings, which are most likely artifacts,
probably caused by the loss of information resulting from the transformation of the sequence data into distances. As long
as no more efficient phylogenetic inference methods are available that can directly account for compositional
heterogeneity in large data sets, using methods for reducing compositional heterogeneity in the data in combination with
methods that assume a stationary amino acid composition remains an option for controlling systematic errors in tree
reconstruction that result from compositional bias. Our analyses indicated that the paraphyly of Deuterostomia in some
analyses is the result of systematic errors that also affected the relationships of Entoprocta and Ectoprocta.
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Introduction
The advent of phylogenomics based on large expressed
sequence tag (EST) or genome projects resulted in
alignments that are a magnitude larger than previously
available sequence data sets and promised the resolution
of the relationships of metazoan phyla (Philippe et al.
2005; Philippe and Telford 2006; Baurain et al. 2007).
Taxon sampling has been improved so that genomic scale
data are now available from most metazoan phyla
(Hausdorf et al. 2007; Brinkmann and Philippe 2008;
Dunn et al. 2008; Helmkampf et al. 2008; Struck and Fisse
2008; Witek et al. 2008; Hejnol et al. 2009). The strongly
increasing amount of available data reduces the influence
of random errors on phylogenetic inference. Neverthe-
less, many internal nodes are still poorly supported,
and different analyses produce contradictory topologies.
One reason for such incongruent outcomes may be
systematic errors resulting from violations of the as-
sumptions of the models used for tree reconstruction
(Delsuc et al. 2005).

Most models of protein evolution assume that the
amino acid composition is stationary. Violations of this
assumption may result in incorrect topological estimation.
Compositional heterogeneity (Lockhart et al. 1994; Foster
and Hickey 1999; Foster 2004; Jermiin et al. 2004; Phillips
et al. 2004; Collins et al. 2005) or a combination of com-
positional heterogeneity and rate heterogeneity among lin-
eages (Ho and Jermiin 2004) are common problems in this
respect. Lartillot and Philippe (2008) noted that the as-
sumption of compositional homogeneity made by conven-
tional protein models is strongly violated in the metazoan
phylogenomic data set they examined.

We investigated different strategies to reduce the poten-
tial influence of compositional heterogeneity on phyloge-
nomic analyses of metazoan relationships. We evaluated
three approaches for reducing compositional heterogene-
ity in a ribosomal protein data set concerning their effec-
tiveness in reducing violations of the model of protein
evolution and their influence on the phylogenetic informa-
tion content of the alignments. These approaches were the
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exclusion of taxa with strongly deviating amino acid com-
position, the recoding of amino acids in groups, and the
exclusion of the proteins with the most heterogeneous
amino acid composition between taxa from the alignment.
Furthermore, we applied two methods that consider
compositional heterogeneity directly in the phylogenetic
reconstruction, namely Bayesian inference analysis with
the CAT–BP model (Blanquart and Lartillot 2008) and
employing distance methods using equal input distances
(Tamura and Kumar 2002).

Materials and Methods

Extraction and Alignment of Ribosomal Protein
Sequences
Amino acid sequences of ribosomal proteins from 48 met-
azoans were retrieved from NCBI’s RefSeq database, from
gene model data sets derived from recent genome projects,
or from EST data processed as previously described
(Hausdorf et al. 2007, with the addition of a second clus-
tering step to improve contig assembly). Slow-evolving taxa
were selected instead of fast-evolving ones whenever pos-
sible (e.g., Paraplanocera, Xiphinema). These data were sur-
veyed by the TBlastN algorithm based on a query set of
78 human cytoplasmic ribosomal protein sequences ac-
quired from the Ribosomal Protein Gene Database
(http://ribosome.med.miyazaki-u.ac.jp, excluding rps4y
and rpl41, which are redundant or too short, respectively).
All hits with an e value lower than 1 � 10�10 were again
queried against the human ribosomal protein sequences by
employing the genewisedb algorithm (score cutoff,50) as
implemented in theWise2 package (Birney et al. 2004). This
was done to receive protein translations corrected for
frameshift errors due to sequencing inaccuracy. Generally,
the longest sequence was taken of each gene and taxon. The
resulting nonredundant gene sets were individually aligned
by the L-INS-i algorithm implemented in MAFFT (Katoh
et al. 2002; Katoh and Toh 2008) and edited by Gblocks
(Castresana 2000) using low stringency parameters. The final
alignment, spanning 11,544 amino acid positions, was at-
tained by concatenating all single alignments and has been
deposited at TreeBASE (http://www.treebase.org, accession
number S10436). Alignments with reduced taxon sets were
attained by removing taxa from the final complete alignment.

Phylogenetic Analyses and Evaluation of Model
Violation Caused by Compositional Heterogeneity
We performed Bayesian inference analyses with the
CAT model that adjusts for site-specific amino acid fre-
quencies (Lartillot and Philippe 2004) as implemented in
PhyloBayes version 3.1c (http://megasun.bch.umontreal.ca
/People/lartillot/www/index.htm). Eight independent
chains were run for each analysis. The number of points
of each chain, the number of points that were discarded
as burn-in, and the largest discrepancy observed across
all bipartitions (maxdiff) are listed in supplementary table
S1 (Supplementary Material online). Taking every tenth

sampled tree, a 50% majority rule consensus tree was com-
puted using all chains.

We evaluated in how far the assumptions of the CAT
model are violated by using posterior predictive tests. In
posterior predictive tests, the observed value of a given test
statistic on the original data is compared with the distri-
bution of the test statistic on data replicates simulated un-
der the reference model using parameter values drawn
from the posterior distribution (every tenth sampled tree).
The reference model is rejected for that statistic if the
observed value of the test statistic deviates significantly.
We used two test statistics measuring compositional het-
erogeneity implemented in PhyloBayes. One measures the
compositional deviation of each taxon by summing the
absolute differences between the taxon-specific and global
empirical frequencies over the 20 amino acids. This test sta-
tistic indicates which taxa deviate significantly but raises
a multiple-testing issue. Alternatively, the maximum devi-
ation over the taxa is used as a global statistic.

To check the results of the Bayesian analyses with the
CAT model, we performed maximum likelihood analyses
using RAxML, version 7.2.4 (Stamatakis 2006) with the
LG model (Le and Gascuel 2008) or the MULTICAT model
(for recoded data). Confidence values were computed by
bootstrapping (Felsenstein 1985) (100 replications).

Approaches for Reducing the Potential Impact of
Compositional Bias
Three approaches to reduce compositional heterogeneity
in the data set were applied. First, we excluded the taxa
with the most strongly deviating amino acid composition
as indicated by the posterior predictive tests and repeated
the Bayesian inference analysis as described.

Second, we recoded the amino acid data into groups. We
used the six groups of amino acids (AGPST, C, DENQ, FWY,
HKR, and ILMV) that tend to replace one another (Dayhoff
et al. 1978), as has been done by Embley et al. (2003). Susko
and Roger (2007) developed an algorithm for constructing
bins of amino acids in order to minimize compositional
heterogeneity for a given alignment by minimizing the
maximum chi-squared statistic for a taxon of the data
set. We used the program minmax-chisq (http://www
.mathstat.dal.ca/tsusko/software.cgi) to obtain these min-
max chi-squared bins for the ribosomal protein data set. In
order to lose as little information as possible, we chose the
largest number of bins for which the minimum P value is
larger than 0.1, which indicates that compositional homo-
geneity cannot be rejected for this set of bins according to
the chi-square test.

The third strategy consisted in evaluating the composi-
tional bias in each of the 78 ribosomal proteins separately
by performing Bayesian inference analysis with the CAT
model and posterior predictive tests using the global test
statistic. Then, we excluded the proteins from the concat-
enated data set for which the CAT model is significantly
violated according to posterior predictive tests. In addition,
we ordered the proteins according to the Z scores of the
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global test statistic and excluded the third respectively the
half of the proteins with the highest Z scores.

As alternative to the approaches for reducing com-
positional heterogeneity in the data set, we applied two phy-
logeny reconstruction methods that account for
compositional heterogeneity. First, we performed a Bayesian
analysis with the CAT–BP model (Blanquart and Lartillot
2008) as implemented in nhPhyloBayes (http://www
.lirmm.fr/mab/blanquart/),which accounts for compositional
heterogeneity between lineages by introducing breakpoints
along the branches of the phylogeny at which the amino acid
composition is allowed to change. In nhPhyloBayes, the num-
ber of components in the mixture has to be fixed. In the Phy-
loBayes analysiswith the complete data set, themeannumber
of categories was 40.4± 14.9. Thus, we did not change the de-
fault innhPhyloBayes(50categories).Nineindependentchains
were run for each analysis. The number of points that were
discarded asburn-inwasdetermined for eachchain separately
by checkingwhen theposterior probabilities of each run reach
stationarity. Taking every tenth sampled tree, a 50% majority
rule consensus tree was computed using all chains that sam-
pled trees in the same high posterior probability range.

Second, we constructed a neighbor joining tree (Saitou
and Nei 1987) based on equal input distances considering
pattern and rate heterogeneity (Tamura and Kumar 2002)
as implemented in MEGA version 4.1 (Tamura et al. 2007).
For comparison, we calculated also a neighbor joining tree
based on Jones, Taylor, and Thorton (JTT) distances
(Jones et al. 1992) with rate variation among sites. Both
analyses were calculated with a 5 0.607 as determined
in the maximum likelihood analysis. Confidence values
were computed by bootstrapping (Felsenstein 1985)
(1,000 replications).

Results and Discussion

Strategies for Reducing Compositional
Heterogeneity in Sequence Data
A posterior predictive test based on a PhyloBayes analysis
of the complete data set including 11,544 amino acid po-
sitions derived from 78 ribosomal proteins of 48 metazoan
taxa (fig. 1A) confirmed the observation of Lartillot and
Philippe (2008) that the assumption of compositional
homogeneity made by most protein models is strongly
violated in metazoan phylogenomic data (table 1;
supplementary table S2, Supplementary Material online).
Thus, there is a risk of observing artifacts resulting from
compositional bias. We applied three approaches to reduce
compositional heterogeneity of the data set, namely ex-
cluding the taxa with the most strongly deviating amino
acid composition according to the posterior predictive test,
recoding of amino acids in groups with similar properties
(Embley et al. 2003; Rodrı́guez-Ezpeleta et al. 2007) and in
bins that minimize compositional heterogeneity (Susko
and Roger 2007), and excluding proteins with a deviating
amino acid composition.

The test statistic for individual taxa indicated that the
amino acid composition of 18 taxa is significantly deviating

(not considering the multiple-testing issue). When these
taxa were excluded from the calculations (supplementary
fig. S1, Supplementary Material online), a posterior predic-
tive test indicated that the CAT model is no longer signif-
icantly violated (table 1; supplementary table S2,
Supplementary Material online). We also excluded subsets
including only the 6 and the 12 taxa with the smallest
P values (supplementary figs. S2 and S3, Supplementary
Material online). According to posterior predictive tests,
both strategies proved to be sufficient to prevent signifi-
cant model violation (table 1; supplementary table S2,
Supplementary Material online). This shows that it is
not necessary to exclude all taxa that have a significantly
deviating amino acid composition to reduce the heteroge-
neity to a degree the model is no longer significantly vio-
lated.

When the amino acid sequences of the ribosomal pro-
teins were recoded using the six Dayhoff groups of amino
acids that tend to replace one another (Dayhoff et al. 1978)
(supplementary fig. S4, Supplementary Material online),
a posterior predictive test indicated that the CAT model is
also no longer significantly violated (table 1; supplementary
table S2, Supplementary Material online). However, the test
statistic for the individual taxa indicated that the amino
acid composition of 11 taxa is still significantly deviating.
If these taxa were excluded from the calculations in addi-
tion to recoding (supplementary fig. S5, Supplementary
Material online), the global Z score is further decreased
(table 1; supplementary table S2, Supplementary Material
online). Although fewer taxa were excluded than in the
analysis of the unrecoded data set excluding significantly
deviating taxa, the Z score indicated that the reduction
of compositional heterogeneity is stronger than in this
analysis (table 1).

Alternative to the Dayhoff groups of amino acids, we
determined bins of amino acids that minimize composi-
tional heterogeneity for the ribosomal protein data set with
the method described by Susko and Roger (2007). Whereas
the minimum P values for 18 or more bins are smaller than
0.05 (supplementary table S3, Supplementary Material
online), the minimum P value for 17 minmax chi-squared
bins (AI, RK, N, D, C, Q, ES, G, H, L, M, F, P, T, W, Y, and V) is
0.13, which indicates that compositional homogeneity can-
not be rejected for these bins according to the chi-square
test. However, a posterior predictive test showed that the
CAT model is still significantly violated (table 1;
supplementary table S2, Supplementary Material online)
if the amino acid sequences of the ribosomal proteins were
recoded using these bins. The global Z score indicated that
the compositional heterogeneity is even slightly stronger
than in the unrecoded data set (table 1). This contradiction
might be explained by the fact that the chi-square test does
not consider correlation due to relatedness of the taxa on
a tree or by the biasing effect of invariable sites on this test
(Foster 2004; Jermiin et al. 2004). The topology of the re-
sulting tree is identical to that based on the complete un-
recoded data set (fig. 1A). In addition, we recoded the data
set with 12 and 8 minmax chi-squared bins (supplementary
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figs. S6 and S7, SupplementaryMaterial online). Despite that
the minimum P value for 12 bins (ARK, NQ, D, CG, ES, HT,
IV, LM, F, P, W, and Y) being 0.62, a posterior predictive test
revealed a continuing model violation (table 1; supplemen-
tary table S2, Supplementary Material online) if the amino
acid sequences of the ribosomal proteins were recoded us-
ing these bins. The minimum P value for 8 bins (ARCK, NDP,
QES, GLMY, HAT, IV, F, and W) amounted to 0.68, which is
the highest minimum P value for any number of bins found
with minmax-chisq. A posterior predictive test indicated
that the CAT model is no longer significantly violated (table
1; supplementary table S2, Supplementary Material online)
if the ribosomal protein sequences were recoded using these
bins.

Phylogenetic analyses of the individual ribosomal pro-
teins and posterior predictive tests using the global test sta-
tistic (supplementary table S4, Supplementary Material
online) demonstrated that the amino acid composition

of 7 of the 78 proteins violates the assumptions of the
CATmodel. However, using only the concatenated sequen-
ces of the 71 proteins (in total 10,469 amino acid positions)
that match the model assumptions for phylogenetic infer-
ence (supplementary fig. S8, Supplementary Material on-
line) proved not to be effective in preventing model
misspecification (table 1; supplementary table S2, Supple-
mentary Material online). Despite the reduction of compo-
sitional heterogeneity by excluding significantly deviating
proteins, the test statistic for the individual taxa indicated
that the amino acid composition of 16 taxa is still signif-
icantly biased. If these taxa were excluded from the
calculations in addition to the exclusion of proteins
(supplementary fig. S9, Supplementary Material online),
posterior predictive testing revealed that the CAT model
is no longer significantly violated (table 1; supplementary
table S2, Supplementary Material online). Alternative to ex-
cluding only those proteins for which the CAT model is

FIG. 1. Bayesian inference reconstructions based on 11,544 amino acid positions derived from 78 ribosomal proteins of 48 taxa. Bayesian
posterior probabilities are shown to the right of the nodes; posterior probabilities equal to 1.0 are indicated by black circles. (A) Using the CAT
model. (B) Using the CAT–BP model, which directly accounts for compositional heterogeneity between lineages. Because the topologies have
not converged, the confidence values are not rigorous posterior probabilities in this case.
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violated, we excluded the third respectively the half of the
proteins with the highest Z scores of the global test statistic.
If the third of the proteins with the highest Z scores is ex-
cluded from the data set (supplementary fig. S10, Supple-
mentary Material online), the CAT model is still
significantly violated (table 1; supplementary table S2, Sup-
plementary Material online). However, if only the 39 pro-
teins with the lowest Z scores were used for the
phylogenetic analyses (supplementary fig. S11, Supplemen-
tary Material online), the model is no longer violated (table
1; supplementary table S2, Supplementary Material online).

Thus, the posterior predictive tests demonstrated that
the compositional heterogeneity in the ribosomal protein
data set could be reduced to a degree that the assumptions
of the usedmodel were no longer significantly violated with
all three applied approaches. Depending on the data set
and the main purpose of an analysis, it may be decided
whether it is more appropriate to exclude the taxa or genes
with the most deviating amino acid composition or to re-
code the amino acids into bins. Excluding taxa with
strongly deviating amino acid composition has the disad-
vantage that the phylogenetic relationships of such taxa
cannot be inferred. If this concerns all representatives of
a taxon of interest, no inferences can be made about
the relationships of that taxon. In the ribosomal protein
data set, all representatives of Platyhelminthes and Synder-
mata have a significantly deviating amino acid composition
so that the relationships of these phyla could not be de-
termined when all taxa with a significantly deviating amino
acid composition are excluded (supplementary fig. S1,
Supplementary Material online). However, if only the six

most strongly deviating taxa were excluded, Platyhel-
minthes and Syndermata are still represented in the data
set and the model is no longer violated (supplementary fig.
S2, Supplementary Material online). Excluding taxa may be
the preferential option if only a few taxa have a strongly
deviating amino acid composition and if these are not
absolutely necessary for the question to be solved. Deleting
proteins may be an appropriate method, if compositional
heterogeneity is concentrated in a few proteins. In the
present data set, this was not the case and about half of
the ribosomal proteins had to be excluded to reduce com-
positional heterogeneity to a degree that the model used
was no longer significantly violated (table 1). Probably,
deleting proteins will rarely be an effective method because
compositional bias is usually a genome-wide phenomenon.

In contrast, recoding may be the most appropriate ap-
proach if important or many taxa and many proteins have
a strongly deviating amino acid composition. However, re-
coding the ribosomal protein sequences with the six Dayh-
off groups of amino acids led to strong loss of information
resulting in a large polytomy within Lophotrochozoa and
a reduction of the posterior probabilities of several
branches of the inferred phylogeny (supplementary
fig. S4, Supplementary Material online). Using more bins
for recoding conserves more information. Unfortunately,
the method described by Susko and Roger (2007) does
not guarantee that the bins that reduce compositional het-
erogeneity most effectively are determined. Nevertheless, it
might be a helpful tool for exploring which bins reduce
compositional bias so that the used model is no longer vi-
olated and that still more information is conserved than

Table 1. Results of Posterior Predictive Tests Indicating the Ability of Different Approaches to Reduce Compositional Bias in Phylogenetic
Inference of Metazoan Relationships.

Approach Remaining
Taxa

Remaining
Positions in
Alignment

Z Score P Value Number of Taxa
with Significantly
Deviating Amino
Acid Composition

Original data set 48 11,544 4.59 0.00 18
Exclusion of the 18 taxa with a significantly
differing amino acid composition

30 11,544 0.24 0.37 2

Exclusion of the 6 taxa with the most
strongly differing amino acid composition

42 11,544 �0.02 0.47 10

Exclusion of the 12 taxa with the most
strongly differing amino acid composition

36 11,544 0.05 0.45 4

Recoding using 6 Dayhoff groups 48 11,544 1.47 0.08 11
Recoding using 6 Dayhoff groups and exclusion
of taxa with a significantly differing
amino acid composition

37 11,544 �0.20 0.52 1

Recoding using 17 minmax chi-squared bins 48 11,544 5.37 0.00 20
Recoding using 12 minmax chi-squared bins 48 11,544 3.56 0.01 18
Recoding using 8 minmax chi-squared bins 48 11,544 1.48 0.08 12
Exclusion of proteins for which the
CAT model is significantly violated

48 10,469 4.21 0.00 16

Exclusion of proteins for which the CAT model
is significantly violated and exclusion of taxa with
a significantly differing amino acid composition

32 10,469 �0.72 0.76 0

Exclusion of the third of the proteins with the
highest heterogeneity

48 7,671 2.26 0.01 10

Exclusion of the half of the proteins with the
highest heterogeneity

48 5,710 1.49 0.08 11
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with recoding using the six Dayhoff groups. The efficiency
of bins found with this method in reducing compositional
heterogeneity can be checked with other approaches like
posterior predictive tests.

We performed maximum likelihood analyses to check
whether the described results of the Bayesian analyses
might represent idiosyncrasies of the CAT model. A max-
imum likelihood analyses with the LG model (Le and
Gascuel 2008) of the complete data set resulted in a tree
(supplementary fig. S12, Supplementary Material online)
that is similar to the result of the corresponding Bayesian
analyses (fig. 1A) but shows monophyletic Deuterostomia.
A maximum likelihood analyses with the data set recoded
using the six Dayhoff groups of amino acids resulted in
a similar topology (supplementary fig. S13, Supplementary
Material online). However, in agreement with the corre-
sponding Bayesian analyses, the support for the mono-
phyly of Deuterostomia increased and the support for
Entoprocta þ Platyhelminthes decreased in comparison
with the tree based on the unrecorded data set.

Phylogenetic Inference Methods Accounting for
Compositional Heterogeneity
An alternative to reducing compositional heterogeneity in
the data is using phylogeny reconstruction methods that
directly account for compositional heterogeneity. One ap-
proach is using maximum likelihood or Bayesian analysis
with models that consider nonstationary sequence evolu-
tion. Several such models have been proposed (Foster 2004;
Blanquart and Lartillot 2006, 2008; Dutheil and Boussau
2008). We used the program nhPhyloBayes that imple-
ments the CAT–BP model (Blanquart and Lartillot 2008)
for an automatic tree search. The CAT–BP model accounts
for compositional heterogeneity between lineages by intro-
ducing breakpoints along the branches of the phylogeny at
which the amino acid composition is allowed to change.
This makes the calculations computationally expensive.

We started nine chains with the complete ribosomal pro-
tein data set. The runs showed two different behaviors:
Whereas the number of breakpoints at which the amino
acid composition changes varied between 0 and 5 (with
a mean number between 0.18 and 0.48) in four of the nine
runs, it suddenly increased to 38–58 breakpoints in the
other chains at different times and remained in that range
for the rest of the run (supplementary fig. S14A, Supplemen-
tary Material online). These long burn-ins indicate a lack of
efficiency of the Markov chain Monte Carlo (MCMC) sam-
pling algorithm. In the CAT–BP model, a conservative prior
on the number of breakpoints N is used to avoid potential
dominant effects of the prior on the posterior. Because the
prior on N is conservative, a high observedN (as in our anal-
ysis) indicates that there is compositional bias in the data.
The high number of breakpoints in the latter chains reflects
the result of the posterior predictive test that 18 taxa be-
longing to several different clades have amino acid compo-
sitions that significantly deviate from the assumptions of
the CAT model (supplementary table S2, Supplementary

Material online). Although the high N induces a significant
improvement of the model fit, the sudden increases of the
number of breakpoints were accompanied by equally
abrupt decreases of the likelihood (supplementary
fig. S14B, Supplementary Material online). Nevertheless,
the posterior probabilities increased (supplementary
fig. S14C, Supplementary Material online). There are two
possible interpretations of this behavior. From a frequent-
ist’s point of view, one may argue that the analysis went
wrong. However, in the Bayesian logic, it is accepted that
priors have an influence on the results and one accepts
the solution with the highest posterior probability, even
if it is different from the maximum likelihood solution.

The five chains with many breakpoints and high poste-
rior probabilities converged with regard to most parame-
ters. However, the topologies of these chains did not yet
converge. This concerns especially the relationships of
Ectoprocta and Entoprocta. In four of the five chains
and in the consensus tree (fig. 1B), Bryozoa including
Ectoprocta and Entoprocta is monophyletic (posterior
probabilities 0.94–1.00), but in one chain, Entoprocta
is the sister group of Platyhelminthes (posterior probability
1.00) and Ectoprocta is the sister group of Kryptrochozoaþ
Annelida þ Mollusca (posterior probability 1.00). These
two topologies are local optima. The lack of efficiency of
the mixing behavior prevents the MCMC algorithm to
escape from one optimum to the other. Thus, the obtained
phylogeny should be interpreted with caution. Deuterosto-
mia is paraphyletic in all chains.

Second, we constructed a neighbor joining tree based on
equal input distances considering pattern and rate hetero-
geneity (Tamura and Kumar 2002). These distances were
designed as an improvement in comparison to LogDet dis-
tances (Lockhart et al. 1994). There are several probable
artifacts in the resulting tree (supplementary fig. S15,
Supplementary Material online), including paraphyly of
Deuterostomia, polyphyly of Ecdysozoa and a sister group
relationship between Platyzoa, that is, Syndermata þ
Platyhelminthes, and Nematoda þ Tardigrada. The same
topology is recovered in a neighbor joining analysis based
on JTT distances with rate variation among sites
(supplementary fig. S16, Supplementary Material online).
Thus, the use of equal input distances considering pattern
and rate heterogeneity could not alleviate artifacts found
with a model that does not consider heterogeneous amino
acid compositions. The observed artifacts are, at least
partly, the result of the loss of information resulting from
the transformation of sequence data into distances.

A phylogenetic inference method that takes composi-
tional heterogeneity into account is preferable to methods
for reducing compositional heterogeneity in the data be-
cause reducing compositional heterogeneity results always
in a loss of information. Unfortunately, the current imple-
mentation of the CAT–BP model is computationally so ex-
pensive that the topologies of the different runs did not
converge even after several months. The much faster neigh-
bor joining method using equal input distances produced
artifacts. nhPhyloBayes may be a good option for
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controlling systematic errors in tree reconstruction that re-
sult from compositional bias for smaller data sets. However,
for large data sets, using methods for reducing composi-
tional heterogeneity in combination with inference meth-
ods that assume a stationary amino acid composition
remains an option until faster hardware and more efficient
algorithms have been developed.

Systematic Errors Affecting Phylogenetic Inference
of Metazoan Relationships Based on Ribosomal
Protein Sequences
Aside from evaluating methods for reducing compositional
bias in phylogeny reconstruction, the identification of sys-
tematic errors in the reconstruction of metazoan phylog-
eny based on ribosomal protein sequences was another
purpose of this study. Systematic errors may be indicated
by a conflict between highly supported splits in trees cal-
culated using different modifications of the same data set
or calculated with different methods. A comparison of the
trees resulting from the different analyses of the ribosomal
protein data set (fig. 1, supplementary figs. S1–S16, Supple-
mentary Material online) revealed that two cases are af-
fected by such conflicts, namely the monophyly of
Deuterostomia and the relationships of Ectoprocta and En-
toprocta. The relationships of these groups found in the
different analyses are summarized in table 2.

Deuterostomia (echinoderms, hemichordates, and chor-
dates) is usually considered as one of the best supported
metazoan groups (Hennig 1979; Ax 1995; Zrzavý et al. 1998;
Nielsen 2001; Peterson and Eernisse 2001; Halanych 2004;
Hejnol et al. 2009). However, their monophyly has recently
been questioned by Lartillot and Philippe (2008). In the
Bayesian trees calculated with the complete data set
(fig. 1A), the data set recoded using 17 minmax chi-squared
bins, the data set recoded using 12 minmax chi-squared
bins (supplementary fig. S6, Supplementary Material
online), the data set including only the 71 not significantly
deviating ribosomal proteins (supplementary fig. S8, Sup-
plementary Material online), and the data set including on-
ly the 52 ribosomal proteins (supplementary fig. S10,
Supplementary Material online) with the least heterogene-
ity between lineages, paraphyly of Deuterostomia is
strongly supported (posterior probabilities �0.95) in most
cases because the representative of the echinoderms,
Strongylocentrotus, is sister to all other representatives of
Bilateria. However, this topology is not in concordance with
the result obtained by Lartillot and Philippe (2008). In con-
trast to our findings, echinoderms (and hemichordates) are
more closely related to other Bilateria in their tree calcu-
lated with the CAT model. Both posterior predictive tests
of Lartillot and Philippe (2008) and our own posterior pre-
dictive tests showed that the assumptions of the CAT
model are significantly violated by both phylogenomic data
sets (table 1; supplementary table S2, Supplementary Ma-
terial online). The situation is different in the calculations
based on the data sets in which the model assumptions are
not violated with the exception of the analysis based on the
39 ribosomal proteins with the least heterogeneity between

lineages (supplementary fig. S11, Supplementary Material
online). The support for the paraphyly of Deuterostomia
decreases with increasing number of exclusions of taxa with
the strongly deviating amino acid composition (posterior
probability 0.94, if only the 6 most strongly deviating taxa
were excluded, supplementary fig. S2, Supplementary
Material online; 0.72, if the 12 most strongly deviating taxa
were excluded, supplementary fig. S3, Supplementary
Material online). In the tree calculated with the 71 protein
data set from which taxa with a deviating amino acid
composition have been excluded (supplementary fig. S9,
Supplementary Material online), the support for Bilateria
exclusive of Echinodermata also decreased (posterior prob-
ability 0.90), and in the tree based on the data set recoded
using the Dayhoff groups (supplementary fig. S4, Sup-
plementary Material online) or using eight minmax
chi-squared bins (supplementary fig. S7, Supplementary
Material online), the monophyly of Deuterostomia is well
supported (posterior probability 0.96). This indicates that
the paraphyly of Deuterostomia was caused by a systematic
error. Thus, there is no reason to suppose that deuteros-
tomy was ancestral (Lartillot and Philippe 2008).

A further case concerns the relationships of Entoprocta
and Ectoprocta (table 2). These two taxa have been as-
signed to different subgroups of bilaterians based on the
differences in cleavage patterns, larval types, and body cav-
ities. The coelomate ectoprocts share a ciliated tentacular
feeding apparatus around the mouth opening called loph-
ophore and radial cleavage with Phoronida and Brachiopo-
da and were classified with them as Lophophorata
(5Tentaculata). This group was long considered the sister
or the stem group of Deuterostomia (Hennig 1979; Emig
1984; Ax 1995). The acoelomate entoprocts show spiral
cleavage and have trochophora-type larvae and either were
included in Trochozoa (Ax 1995; Zrzavý et al. 1998;
Peterson and Eernisse 2001) or were classified with other
acoelomata phyla in Platyzoa or as sister group of Platyzoa
(Halanych 2004; Passamaneck and Halanych 2006). How-
ever, recent phylogenomic analyses (Hausdorf et al.
2007; Helmkampf et al. 2008; Struck and Fisse 2008; Witek
et al. 2008; Hejnol et al. 2009) and ribosomal DNA (rDNA)
analyses (Baguñà et al. 2008; Paps et al. 2009) confirmed the
view of Nielsen (1985, 2001) and Cavalier-Smith (1998) that
Ectoprocta and Entoprocta form a monophylum, Bryozoa
(5Polyzoa, also including Cycliophora).

A sister group relationship between the acoelomate En-
toprocta and Platyhelminthes is strongly supported by the
analyses with data sets for which the assumptions of the
CAT model are significantly violated (table 1; supplemen-
tary table S2, Supplementary Material online), namely the
trees calculated with the complete data set (posterior
probability 0.99; fig. 1A), the data set including the
71 not significantly deviating ribosomal proteins (posterior
probability 0.95; supplementary fig. S8, Supplementary Ma-
terial online), and the data set including the 52 least het-
erogeneous ribosomal proteins (posterior probability 0.98;
supplementary fig. S10, Supplementary Material online).
Again, the situation is different in some of the analyses
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with the data sets in which the assumptions of the used
model are not violated. The support for Entoprocta þ Pla-
tyhelminthes decreased in the analyses based on the 39
least heterogeneous ribosomal proteins (posterior proba-
bility 0.94; supplementary fig. S11, Supplementary Material
online). When the 6 taxa with the most strongly deviating
amino acid composition were excluded from the analysis
(supplementary fig. S2, Supplementary Material online)
or when the data set with all 48 taxa was recoded with
the Dayhoff groups (supplementary fig. S4, Supplementary
Material online), Entoprocta is part of a large polytomy

within Lophotrochozoa. Finally, Entoprocta and Ectoprocta
form a well-supported clade (posterior probability 0.98) in
the analysis of the 37 taxa data set recoded using the Dayh-
off groups (supplementary fig. S5, Supplementary Material
online) supporting the monophyly of Bryozoa. This group
has also been found in four of the five chains that attained
high posterior probabilities and the consensus tree (fig. 1B)
of the nhPhyloBayes analysis as well as in the neighbor join-
ing analyses (supplementary figs. S14 and S15, Supplemen-
tary Material online), albeit without bootstrap support.
Nevertheless, this result is more controversial than the

Table 2. Phylogenetic Differences between Different Approaches to Reduce Compositional Bias.

Method Data Set Deuterostomia Echinodermata
Sister to Rest
of Bilateria

Ectoprocta
1
Entoprocta

Entoprocta
1
Platyhelminthes

Lophophorata

Bayesian (CAT model) Original data set — 0.96 — 0.99 —
Bayesian (CAT model) Exclusion of the 18 taxa with a

significantly differing amino
acid composition

? ? — ? 0.99

Bayesian (CAT model) Exclusion of the 6 taxa with
the most strongly differing
amino acid composition

— 0.94 — — 0.65

Bayesian (CAT model) Exclusion of the 12 taxa with
the most strongly differing
amino acid composition

— 0.72 — ? 0.73

Bayesian (CAT model) Recoding using 6 Dayhoff groups 0.96 — — — —
Bayesian (CAT model) Recoding using 6 Dayhoff groups

and exclusion of taxa with a
significantly differing amino
acid composition

? ? 0.98 — —

Bayesian (CAT model) Recoding using 17 minmax
chi-squared bins

— 1.00 — 0.96 —

Bayesian (CAT model) Recoding using 12 minmax
chi-squared bins

— 0.91 — 0.99 —

Bayesian (CAT model) Recoding using 8 minmax
chi-squared bins

0.96 — — 1.00 0.79

Bayesian (CAT model) Exclusion of proteins for which
the CAT model is significantly
violated

— 0.95 — 0.95 —

Bayesian (CAT model) Exclusion of proteins for which
the CAT model is significantly
violated and exclusion of taxa
with a significantly differing
amino acid composition

— 0.90 — — 0.99

Bayesian (CAT model) Exclusion of the third of the
proteins with the highest
heterogeneity

— 0.97 — 0.98 —

Bayesian (CAT model) Exclusion of the half of the
proteins with the highest
heterogeneity

— 0.86 — 0.94 —

Bayesian (CAT 1 BP
model)

Original data set — 0.81 0.71* — —

Maximum likelihood
(LG model)

Original data set 0.90 — — 0.88 —

Maximum likelihood
(MULTICAT model)

Recoding using 6 Dayhoff
groups

0.97 — — 0.52 —

Neighbor joining (equal
input distances with
pattern and rate
heterogeneity)

Original data set — — 0.36 — —

Neighbor joining
(JTT distances)

Original data set — — 0.51 — —

NOTE.—If a group is monophyletic, the posterior probability, respectively, the bootstrap support is given.

*Posterior probabilities in four of five chains 0.94–1.00.
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monophyly of Deuterostomia because the analyses of the
unrecoded data sets from which the taxa with the most
strongly deviating amino acid composition were excluded
(supplementary figs. S1–S3, Supplementary Material on-
line), the analysis of the data set recoded using the eight
minmax chi-squared bins (supplementary fig. S7,
Supplementary Material online), and the analysis of the
71 protein data set excluding compositionally heteroge-
neous taxa (supplementary fig. S9, Supplementary Material
online) revealed another possibility, namely the monophyly
of Lophophorata as suggested by Emig (1984). Moreover,
the analyses of the unrecoded data sets excluding
the 12 or 18 taxa with the most strongly deviating amino
acid composition (supplementary figs. S1 and S3,
Supplementary Material online) and the analysis of the
71 protein data set excluding compositionally heteroge-
neous taxa (supplementary fig. S9, Supplementary Material
online) revealed a sister group relationship between Phoro-
nida and Ectoprocta (posterior probability 0.73, 0.98, and
0.93, respectively). This grouping furthermore challenges
the monophyly of Brachiozoa including Phoronida and
Brachiopoda that has been supported by analyses based
on rDNA (Cohen et al. 1998; Cohen 2000; Mallatt &Winchell
2002; Halanych 2004; Cohen & Weydmann 2005; Baguñà
et al. 2008; Paps et al. 2009; but see Passamaneck & Halanych
2006), sodium–potassium ATPase a-subunit (Anderson
et al. 2004), morphology (Nielsen 2001), a combination of
morphological and 18S rDNA data sets (Zrzavý et al.
1998; Giribet et al. 2000; Peterson & Eernisse 2001), and phy-
logenomic analyses (Helmkampf et al. 2008). Brachiozoa is
found in most of the trees (fig. 1A and B; supplementary figs.
S2, S4–S8, S10–S12, S15, and S16, Supplementary Material
online) and is also strongly supported in analyses in which
the assumptions of the usedmodels are not violated, namely
the analyses of the data sets recoded using the Dayhoff
groups (supplementary figs. S4 and S5, Supplementary Ma-
terial online; posterior probability 0.99 and 0.98, respectively)
and the analysis with the CAT–BP model (fig. 1B; posterior
probability 1.00). These contradictory results between anal-
yses of data sets that are in compliance with the assump-
tions of the used model concerning compositional
homogeneity indicate further systematic errors that need
to be addressed in future studies.

Supplementary Material
Supplementary figures S1–S16 and supplementary tables
S1–S4 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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Zrzavý J, Mihulka S, Kepka P. 1998. Bezděk A. 1998. Tietz D. 1998.
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