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Abstract

Evolvability is the capacity of an organism or population for generating descendants with increased fitness. Simulations and
comparative studies have shown that evolvability can vary among individuals and identified characteristics of genetic
architectures that can promote evolvability. However, little is known about how the evolvability of biological organisms
typically varies along a lineage at each mutational step in its history. Evolvability might increase upon sustaining
a deleterious mutation because there are many compensatory paths in the fitness landscape to reascend the same fitness
peak or because shifts to new peaks become possible. We use genetic marker divergence trajectories to parameterize and
compare the evolvability—defined as the fitness increase realized by an evolving population initiated from a test
genotype—of a series of Escherichia coli mutants on multiple timescales. Each mutant differs from a common progenitor
strain by a mutation in the rpoB gene, which encodes the b subunit of RNA polymerase. Strains with larger fitness defects
are proportionally more evolvable in terms of both the beneficial mutations accessible in their immediate mutational
neighborhoods and integrated over evolutionary paths that traverse multiple beneficial mutations. Our results establish
quantitative expectations for how a mutation with a given deleterious fitness effect should influence evolvability, and they
will thus inform future studies of how deleterious, neutral, and beneficial mutations targeting other cellular processes
impact the evolutionary potential of microorganisms.

Key words: evolvability, compensatory adaptation, fitness landscape, Escherichia coli, experimental evolution, neutral
marker divergence.

Introduction
Mutations can affect not only the current fitness of an or-
ganism but also the ability of its descendants to evolve and
adapt by natural selection. This capacity for improvement
is known as ‘‘evolvability.’’ It has been proposed that differ-
ences in evolvability have favored the success of certain bi-
ological phyla and that design principles such as modularity
and robustness contribute to increased evolvability
(Wagner and Altenberg 1996; Kirschner and Gerhart
1998). In addition, studies with computational models have
demonstrated that genetic architectures with greater
evolvability can arise and will be favored under certain con-
ditions (Earl and Deem 2004; Draghi and Wagner 2008).
However, the question of whether evolvable genetic archi-
tectures in biological organisms result from clade-level
selection or are a by-product of mutations with immediate
benefits to individuals remains controversial (Leroi 2000;
Sniegowski and Murphy 2006).

Evolvability, defined here as the fitness increase realized by
an evolving population initiated from a test genotype, is
a complex trait that is difficult to measure. It depends on
howmutational processes generate genetic variation, how de-
velopmental and regulatory processes render these changes
into potentially adaptive phenotypic variation, the population
dynamics of competition between contending beneficial mu-
tations, and whether the timescale of interest spans a single

mutational step ormany steps. These factors can be rigorously
controlled and tested with replication in evolution experi-
ments with microorganisms (Colegrave and Collins 2008).
Such studies have shown that RNA virus genotypes with sim-
ilar fitness may differ in their evolvability (Burch and Chao
2000; McBride et al. 2008) and that bacteria with increased
mutation rates may be more evolvable under certain circum-
stances (Sniegowski et al. 1997; de Visser et al. 1999).

Little is known about how different kinds of mutations
impact microbial evolvability and whether there are any
general principles for predicting these effects. To begin
to address these questions about the fitness landscapes
of biological organisms, we measured the evolvability of
a series of Escherichia coli strains with different rpoB
mutations on two timescales. On short timescales, when
the first beneficial mutations sweep through evolving pop-
ulations, and over longer periods, when multiple beneficial
mutations accrue, we find a strikingly constant relationship
between the fitness defects caused by these mutations and
the degree to which they increase a strain’s evolvability.

Materials and Methods

Test Strains
Eight rifampicin-resistant (RifR) mutants of the reference
strain REL606 (Lenski et al. 1991; Jeong et al. 2009) were
selected in a single step on Luria Bertani (LB) plates
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supplemented with 100 lg/ml rifampicin. We cannot rule
out the possibility that unknown second-site mutations oc-
curred during the isolation of these strains, but there is gen-
erally thought to be an extremely small chance of
recovering double mutations with this procedure (Kassen
and Bataillon 2006; MacLean and Buckling 2009), and the
fitness defects we found are similar to those reported in
other studies (Reynolds 2000). Variants of each test strain
differing in a genetic marker for L-arabinose (Ara) utiliza-
tion were constructed for evolution and competition ex-
periments. The reference strain has an inactivating point
mutation in the araA gene that gives it an Ara� phenotype
(Lenski et al. 1991). Araþ revertants of each test strain were
isolated by selective plating or gene gorging (Herring et al.
2003). Ara� and Araþ strains can be distinguished as red
and white colonies, respectively, on tetrazolium arabinose
(TA) indicator agar (Lenski et al. 1991).

Evolution Experiment
We propagated 12 replicate populations of each test strain
(the reference strain and eight RifR mutants) founded from
equal mixtures of its Ara� and Araþ marked variants for
80 days as 3-ml liquid cultures in Davis minimal media
(Lenski et al. 1991) supplemented with 100 lg/l glucose
(DM100). To ensure that beneficial mutations in each evo-
lutionary replicate were independently derived, we started
each replicate from two separate cultures, one of the Ara�

variant and one of the Araþ variant, each inoculated with
only 30–50 cells. After 48 h of growth to saturating density,
the generation zero population was established by diluting
each paired Ara� and Araþ culture 1:512 into the same 3-ml
test tube of fresh media. Thereafter, every 24 h, we trans-
ferred 11.7 ll of each culture into 3 ml fresh growth media
for a 1:256 dilution, allowing eight generations of growth to
a final population size of;5.7 ± 2.3� 108 cells (95% confi-
dence interval). Cultures were incubated at 37 �C in 18 �
150-mm test tubes with orbital shaking over a diameter of
1.9 or 2.5 cm at 160 rpm. Every 2 days (16 generations), we
plated a dilution from each of the 108 populations on TA
agar and counted 200–600 colonies to determine the ratio
of the two marked strains. When the marker ratio in a pop-
ulation diverged by more than 100-fold in either direction
for two consecutive measurements, we ceased plating and
counting that replicate until the end of the experiment.

The final Ara�/Araþ ratio was measured again on day
80 for all populations, at which time none were dominated
by a different color than when plating had been suspended.
We isolated a clone with the majority marker state from
each final population and sequenced the portion of its rpoB
gene containing the original RifR mutation to test for con-
tamination. One RifR-8 replicate had the wrong rpoB muta-
tion and was excluded from all analyses. We did not observe
any reversions of the original rpoBmutations responsible for
resistance, and all evolved RifR clones remained resistant to
100 lg/ml rifampicin when streaked on LB plates. We found
secondary mutations that may contribute to adaptation in
the rpoB region we sequenced in 5 of the 12 final Rif-7 clones,
but none in the other evolved clones.

The marker trajectories for the RifR-6 and reference
strains trended consistently toward one color early in
the evolution experiment across all replicates (see
supplementary figs. S1 and S2, Supplementary Material on-
line), indicating that their Ara� and Araþ variants did not
have precisely the same fitness. We estimate that the Ara�

RifR-6 strain had a fitness advantage of 1.28% ± 0.23% over
its paired Araþ revertant during the first 64 generations of
the experiment and that the Araþ variant of the reference
strain had a 0.55% ± 0.20% advantage over the Ara� ver-
sion during the first 80 generations (n5 12, standard error
of the mean). These differences may be due to unknown
second-site mutations sustained while constructing Araþ

variants or during their propagation prior to the evolution
experiment. In any case, their fitness effects are negligible
compared with the selection coefficients of the beneficial
mutations studied here, and we also corrected for these
trending baselines in the marker trajectory analysis.

Marker Divergence Analysis
The procedure for inferring effective evolutionary param-
eters for the first beneficial mutations to fix in a test strain
from replicate marker ratio trajectories, following Hegre-
ness et al. (2006), has three main steps: 1) Simulate families
of marker trajectories under the same transfer regime as
the evolution experiment at many combinations of l
and s parameters that describe the mutation rate and se-
lection coefficient, respectively, of a single category of ben-
eficial mutations. 2) Fit the shape of the initial divergence of
each experimental and simulated marker trajectory to an
empirical equation with a and s parameters that represent
the rate of divergence and the waiting time until diver-
gence, respectively. 3) Find the values of the effective evo-
lutionary parameters l and s at which the 2D distribution
of (a, s) pairs fit to the simulated trajectories best repro-
duces the (a, s) pairs fit to the experimental trajectories.
Details for how we carried out each of these steps in
the analysis are described below.

Stochastic Population Genetic Simulations. Hegreness
et al. (2006) modeled the evolutionary dynamics of serial
transfer experiments with a combination of deterministic
and stochastic methods. In this work, we employ a contin-
uous time Markov process for all growth and mutation dy-
namics (Renshaw 1993) and model dilution as sampling
without replacement, making all aspects of these simula-
tions stochastic. This approach means that we do not em-
ploy any of the assumptions needed to efficiently combine
deterministic and stochastic methods. In particular, the
first beneficial mutations to fix in some Rif strain back-
grounds have large selection coefficients that would inval-
idate approximations that were used previously to
calculate the probability that a newly generated beneficial
mutation establishes in a population of fluctuating size in
the deterministic model (Wahl and Gerrish 2001).

Our simulation tracks the number of cells with a given
neutral marker background b and number of beneficial
mutations m at time t: Nb,m(t). The marker background
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can be red or white: b e {r, w}; and the number of mutations
can range from zero to three:m e {0, 1, 2, 3}. The base birth
rate is given by r5 loge2, the doubling time of cells without
mutations. Each mutation gives an additive selective ben-
efit of constant size s. As a result, cells with m mutations
will have a birth rate of r (1 þ ms). The rate of beneficial
mutations per generation is given by l. Thus, the rates of
birth and mutation are

Nb;m / Nb;m þ 1 : rð1 þ msÞð1 � lÞNb;mðtÞ; ð1Þ

Nb;mþ 1/Nb;mþ 1 þ 1 : rð1 þ msÞlNb;mðtÞ; ð2Þ

for allowed values of b andm. However, note that equa-
tion (2) is only valid form� 2 because we allow amaximum
of three mutations.

Given this setup, the simulations proceed very much like
the actual experiments. The parameters that must be set
are the selective benefit of mutations s and the rate of ben-
eficial mutations l. Once these are set, all simulations start
with an initial growth phase. In this step, 100 cells with each
marker background are grown separately to a final popu-
lation size of Nf 5 7.6 � 108. Both populations are diluted
by a factor of 1:512 and then mixed to create an initial pop-
ulation of size Ns 5 2,968,750. From this point forward, the
combined red and white population is grown from Ns to Nf

and diluted by a factor of 1:256, constituting one transfer.
Simulations continued until 1) 125 transfers were com-
pleted (1,000 generations) or 2) the absolute value of
log10(Nr/Nw) was greater than two, indicating a 100-fold
numerical advantage for one of the marker states.

The details of the computational implementation are as
follows: Birth and mutation were simulated using a combi-
nation of the optimized tau-leaping method and basic sto-
chastic simulation algorithm (SSA) as described in Cao et al.
(2006). Tau leaping provides a great speed increase for
these simulations and was used until the population size
was near Nf. At this point, simulation switched to the
exact SSA method to avoid exceeding Nf. Dilution was
done by using the sample without replacement algorithm
of Bebbington (1975). Finally, great care was taken with
random number generation. We employed the Mersenne
Twister algorithm (Matsumoto and Nishimura 1998) to
generate uniform deviates and the algorithm of Ahrens
and Dieter (1982) for Poisson deviates used in the tau-
leaping algorithm.

Note that these population genetic simulations capture
the important effects of clonal interference. Multiple mu-
tational events generating each category of mutant can oc-
cur in a single simulation, and multiple subpopulations
with different beneficial mutations typically compete be-
fore one marker state is fixed. The main simplification
of this approach, justified in Hegreness et al. (2006), is that
every beneficial mutation, even subsequent mutations in
backgrounds that already have one or two beneficial
mutations, has the same selection coefficient and rate of
appearance. One generally expects secondary and tertiary
mutations to be less beneficial than the first mutations to

sweep because there are fewer ways to improve the closer
one comes to a fitness peak. However, this simplifying as-
sumption does not invalidate the predictions of this ap-
proach because secondary and tertiary mutations do not
appreciably affect the initial divergence of marker trajecto-
ries under our conditions. They mostly affect only the later
dynamics in the marker trajectories, such as trend reversals,
that are not part of the quantitative model used to fit the
empirical data.

Fitting the Initial Divergence of Marker Trajectories.
We fit the initial portion of each experimental and sim-
ulated marker trajectory to a simple exponential model
with empirical parameters a and s that represent the
rate of divergence and the waiting time until divergence,
respectively. Our procedure is an extension of that used
by Hegreness et al. (2006). We include additional varia-
bles in the model to correct for experimental complica-
tions. Specifically, the R statistics package (version 2.6.1)
(R Development Core Team 2009) was used to calculate
nonlinear least squares fits of the initial divergence of
marker trajectories to the following equation when
the Ara� (red) variant won:

logeðRr=wðtÞÞ5 logeðRr=wð0ÞÞ þ Dwr=wt

þ logeð1 þ Fre
aðt� sÞÞ;

ð3Þ

Fr 5 Rr=wð0Þ=ð1 þ Rr=wð0ÞÞ; ð4Þ

where Rr/w(t) is the ratio of red (Ara�) to white (Araþ)
colonies at transfer t, Dwr/w is the initial fitness advantage
of the red variant of the test strain over the white variant
expressed as an additive selection coefficient per transfer,
and Rr/w(0) is the initial ratio of red to white colonies at
time 0. When a marker trajectory diverged in the opposite
direction, such that the Araþ (white) variant prevailed, the
same equation was used with r and w subscripts reversed.

For fitting simulated marker curves, we omitted theDwr/w

parameter and set Rr/w(0)5 1. For experimental trajectories,
Rr/w(0) andDwr/w were determined by fitting a user-specified
number of initial baseline points for eachmarker trajectory to
the equation: loge(Rr/w(t)) 5 loge(Rr/w(0)) þ Dwr/wt. Values
of Rr/w(0) varied slightly due to imperfect mixing of the
strains, which led to deviations from the intended 1:1 initial
ratio in some replicates. A nonzeroDwr/w value indicates that
a pair of marked test strain variants had unequal fitness. Ex-
cept for the reference and RifR-6 strain pairs, where the rep-
licate marker trajectories consistently trended toward one
marker state (see supplementary figs. S1 and S2, Supplemen-
tary Material online), the fit value of Dwr/w was generally not
significantly different from zero.

The procedure for finding the initial divergence param-
eters proceeds by testing the first points of each marker
trajectory until there is evidence that adding the next point
results in a data set that does not fit the model. The criteria
for adding further points were that 1) the residual standard
error of the fit was �0.15 and 2) the hypothesis that the
residuals are normally distributed was not rejected by the
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Lilliefors test at a 0.05 significance level. For some experi-
mental trajectories, the standard error condition was never
met due to excessive noise in the marker ratio measure-
ments. In these cases, we used the set of initial points where
the fit to the empirical model passed the Lilliefors test with
the minimum standard error.

Inferring Effective Evolutionary Parameters. In order to
determine the values of the effective evolutionary parame-
ters l and s where simulations reproduce experimental
marker trajectories, Hegreness et al. (2006) combined two
1D Kolmogorov–Smirnov tests that separately compared
the a and s distributions fit from the simulations and experi-
ments. This procedure assumes that the distributions of
a and s are independent. Although this appears to be true
for small values of s, it is not a good assumption for some of
the larger s values encountered here (see, e.g., fig. 1c). There-
fore, we used instead a brute force implementation of the
Fasano and Franceschini (1987) algorithm for computing
a 2D Kolmogorov–Smirnov test. Values of the D statistic
for this test were converted to P values for rejecting the null
hypothesis that the distributions are the same by using the
approximation in Press et al. (2007).

Specifically, we simulated a total of 200 marker diver-
gence trajectories for each of 806 combinations of l and
s: �8.5 � log10(l) � �6.0 in log10 increments of 0.1
and 0.05 � s � 0.35 in increments of 0.01. Because of
the relatively limited number of marker trajectories that
could be simulated at each (l, s) combination due to com-
putational time constraints, we performed an ad hoc
smoothing procedure. The experimental distribution of
(a, s) parameter pairs for a given test strain was compared
with a composite distribution that combined the (a, s) val-
ues from simulations at the (l, s) combination in question
with those from the eight surrounding families of simula-
tions with adjacent values of l and s. That is, 1,800 pseudo-
replicated (a, s) pairs from neighboring simulations were
used as the theoretical distribution for a given (l, s) com-
bination. This procedure was used to determine 95% con-
fidence intervals for l and s where the hypothesis that the
simulated and experimental data were the same could not
be rejected at a 0.05 significance level. Combinations of
l and s that gave the best agreement were defined as those
that maximized the 2D Kolmogorov–Smirnov test P value.

As in Hegreness et al. (2006), we assume that single mu-
tants are almost always responsible for the initial divergence
of marker trajectories. It is possible for the beneficial muta-
tion rate to be so high that, by the time there is appreciable
divergence, multiple small mutations have usually occurred.
This possibility naturally gives rise to a second region of
agreement in the (l, s) plane that corresponds to a lower
selection coefficient and higher mutation rate. The edge
of this area shows up in figure 1d for RifR-3 but is outside
the plotted area for all other test strains. We can be confi-
dent that single mutants are responsible for divergence, and
thus discount this possibility in our experiments, because we
know that the overall mutation rate is very low for our strain
(Barrick et al. 2009). However, this discontinuous confidence

interval may apply in other systems. The opposite extreme is
also possible. In some evolving systems, it may be necessary
for substantial drift on a neutral network to occur before any
beneficial mutations can be discovered, or small beneficial
steps may make beneficial mutations of much larger effect
possible. In these cases, the initial divergence of marker tra-
jectories will also not be due to a single mutant. We believe
that these cases would lead to predictions of very low effec-
tive beneficial mutation rates (far below the reciprocal of the
effective population size and unlike what we found in our
experiment).

Fitness Measurements
Initial fitness defects and evolved improvements were de-
termined using competition experiments (Lenski et al.
1991). Each pair of Ara� and Araþ strains being tested
was separately revived from stocks stored at �80 �C in
15% glycerol or 15% dimethyl sulfoxide, under the same
conditions as the evolution experiment, for one 24-h
growth cycle. After a 1:256 dilution into separate test tubes
for each replicate measurement and an additional 24-h
growth cycle for acclimation to the experimental condi-
tions, we diluted each Ara� and Araþ pair 1:512 into
the same 3-ml test tube of DM100 and immediately spread
an appropriate dilution in saline solution onto TA agar to
determine the initial representation of each strain. After
a 24-h growth cycle in coculture, an appropriate dilution
was again plated on TA agar to determine the final repre-
sentation of each strain. Relative fitness was calculated as
the ratio of the realized Malthusian parameters for each
strain (i.e., the ratio of the logarithm of the final over initial
cell numbers for each strain) (Lenski et al. 1991).

Test of Fitness Transitivity
Nontransitive fitness interactions (Paquin and Adams
1983) between strains bearing the deleterious RifR muta-
tions and the beneficial mutations that arise in the evo-
lution experiment could lead to erroneous relative
fitness values after normalizing to the reference strain’s
fitness. Therefore, we checked this assumption by mak-
ing three sets of fitness measurements for each test
strain: the relative fitness of the marked test strain
variants versus the reference strain (six measurements
per marker state, total n 5 12), the average relative fit-
ness of each test strain versus representative evolved
clones isolated from each of its 12 experimental popu-
lations at day 80 (one measurement per population, total
n 5 12), and the average relative fitness of the 12 rep-
resentative clones versus the reciprocally marked refer-
ence strain (one measurement per population, total n5
12). For each of the eight test strains, the average fitness
of its evolved clones measured directly relative to the
reference strain agreed with that predicted after
combining measurements of its evolved clones versus
the test strain and the test strain versus the reference
strain (two-tailed Welch’s paired t-test, all P . 0.05).
Thus, there is no evidence for nontransitive fitness inter-
actions that would complicate our analysis.
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FIG. 1. Single-step evolvability inferred from marker ratio divergence trajectories. The RifR-3, RifR-4, and RifR-8 test genotypes illustrate the
procedure for estimating the effective evolutionary parameters for the first beneficial mutations that sweep to high frequency in a test strain. (a)
Experimental marker trajectories. The ratio of two marked variants (Ara�/Araþ) of each test strain was monitored during a 640-generation
evolution experiment. Each set of colored symbols represents an independently evolving replicate population (12 each for RifR-3 and RifR-4 and 11
for RifR-8). The marker ratio diverges from unity as beneficial mutations that occur in the genetic background of one marker state rise in frequency
during the evolution experiment. Curves are fits to an empirical equation with parameters describing the waiting time (s) and steepness (a) of the
initial divergence. Fits include only the initial points of each marker trajectory (closed symbols) until goodness-of-fit tests fail (open symbols). In
large populations such as these, the shape of initial divergence is often not attributable to a single beneficial mutation. Rather, it typically
represents the superimposed effects of clonal interference between multiple competing beneficial mutations, some linked to each of the two
marker states. In particular, certain marker curves that show delayed divergence may indicate that almost equally beneficial mutations arose nearly
simultaneously in each of the two marker backgrounds. (b) Simulated marker trajectories. To infer a characteristic effective per-generation
mutation rate (l) and selective advantage (s) for the first successful beneficial mutations in a given strain background, we used stochastic
population genetic simulations that include clonal interference to generate 200 theoretical marker divergence curves for each of 806 different (l, s)
combinations. The initial divergence of these trajectories was fit to the empirical equation to obtain a distribution of (a, s) parameter pairs
describing this family of curves. Twelve simulated marker trajectories, generated using l and s values with the best agreement to the experimental
data, are shown with initial divergence curves fit as in (a). (c) Empirical parameters. The distributions of a and s empirical parameter pairs fit from
experimental data (red crosses) and simulations (gray crosses) were compared using a 2D Kolmogorov–Smirnov test to reject those (l, s)
combinations where the initial divergence statistics differ significantly (P , 0.05) from the experimental data. The simulated distributions were
generated using the l and s values that provide the best agreement to the experimental data. s values are expressed in units of transfers, and a
values are per transfer, where one transfer is equal to eight generations. (d) Single-step evolvability. The effective evolutionary parameters l and s
measure the evolvability of each test strain in terms of the first beneficial mutations that sweep to fixation or near fixation under these conditions.
Parameter combinations giving the best agreement between simulated and observed marker trajectories (black) and an estimated 95% confidence
interval (green) are shown. Values of l are per cell generation, and values of s are additive selection coefficients normalized to the fitness of each
RifR ancestor. The edge of a discontinuous confidence interval for RifR-3 appears on the upper border of its graph. This region corresponds to
a very high beneficial mutation rate that is not relevant to our experiment, as discussed in the text. See supplementary figures S1 and S2,
Supplementary Material online, for graphs of the other six test strains, and see the Materials and Methods for full details of the analysis procedure.
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Linear Regression
Because there is experimental uncertainty in the test strain
fitness defects (d), we used Model II regression to test for
relationships between d and the various evolvability
parameters. The major axis method was used to fit regres-
sion lines against both the test strains’ effective selection
coefficients (s) and their sustained fitness increases (R).
We estimated P values for how significantly the slopes were
greater than zero and less than one by a method appropri-
ate for small samples (Jolicoeur 1968). No significant
correlation was found between d and the effective muta-
tion rate (l) or its base-ten logarithm by either major axis
or ordinary least squares regression.

Results and Discussion
To explore the effects of defined single-mutation steps on
bacterial evolvability, we isolated RifR variants of an E. coli B
strain that has been the focus of other evolution studies
(Lenski et al. 1991; Blount et al. 2008; Barrick et al. 2009).
Most RifR mutations in bacteria occur within the rpoB gene
(Jin and Zhou 1996), which encodes the b subunit of RNA
polymerase. Because RifR mutants are at an advantage rel-
ative to their sensitive progenitors when the antibiotic ri-
fampicin is present, they have been used previously to
infer the distributions of fitness effects of beneficial muta-
tions in these stressful environments (Kassen and Bataillon
2006; MacLean and Buckling 2009). Some RifR mutations
disrupt RNA polymerase function, perturbing global gene
expression with pleiotropic and potentially maladaptive
consequences. Thus, in the environment used in our experi-
ments, which does not contain rifampicin, they represent
neutral or deleterious mutations, such as those that might
fix in an evolving population by genetic drift or hitchhiking
with beneficial mutations. The eight RifR isolates studied
here have different mutations in rpoB and a range of fitness
defects relative to the reference strain (table 1).

We performed evolution experiments in a marker diver-
gence format (Chao and Cox 1983; Rozen et al. 2002;
Hegreness et al. 2006) to quantify how each rpoB mutation
affects evolvability. Twelve replicate populations were
founded as equal mixtures of two variants of each test strain
that were distinguishable by a neutral (or nearly neutral) ge-
netic marker and propagated by serial transfer for 80 days

(640generations)of evolution.Over time,newbeneficialmu-
tations will arise in the genetic background of one of the two
marker states and cause the proportion of individuals with
thatmarker state to increase as they displace less fit compet-
itors of the opposite marker state and their ancestors
(fig. 1a). Reproduction is strictly asexual in this system(Lenski
et al. 1991), so mutations remain linked to the marker state
in which they originate and there are no hybrid progeny
that recombine beneficial mutations from competing line-
ages. In large asexual populations, such as the ones in this
experiment,multiple subpopulationsof variants carryingdif-
ferent beneficialmutations will typically reach relatively high
frequencies in a population before one sweeps to fixation.
Competition between these beneficial mutations, called
clonal interference, slows the takeover of the population
by the most fit subpopulation. As each beneficial mutation
may occur in either of the twomarker backgrounds, changes
in themarker ratioover time represent a superpositionof the
effects of this competition, and therefore, these changes
do not directly reflect the selective advantage of a single
sweeping beneficial mutation relative to its progenitor.

Although there are many more mutations that confer
small than large fitness advantages (Perfeito et al. 2007),
those rare mutations with large benefits will typically pre-
vail and be the first mutations to appreciably shift the
marker ratio and sweep to fixation or near fixation in large
populations (Gerrish and Lenski 1998; Patwa and Wahl
2008). In fact, a simplified model with only a single category
of beneficial mutations with one effective mutation rate (l)
and selective advantage (s) that also includes clonal inter-
ference between independently arising mutants can rea-
sonably reproduce the evolutionary dynamics observed
in these experiments (Hegreness et al. 2006). We compared
the initial divergence in each set of marker trajectories with
population genetic simulations to infer the underlying
s and l values characteristic of the first beneficial muta-
tions to sweep in populations founded by each test strain
(fig. 1 and supplementary figs. S1 and S2, Supplementary
Material online). These two effective parameters provide
quantitative measures of short-term evolvability. They re-
flect the features of a genotype’s local fitness landscape
that determine its ability to adapt in a single step, given
the environment and population structure.

Table 1. Test Strains of Escherichia coli with Rifampicin Resistance Mutations.

Isolate Relative Fitnessa Mutated Geneb Nucleotide Changec Codon Change Amino Acid Changec

Reference 1.004 6 0.028 — — — —
RifR-1 0.984 6 0.025 rpoB (II) A1714C ATC/CTC I572L
RifR-2 0.980 6 0.036 rpoB (II) C1721A TCT/TAT S574Y
RifR-3 0.969 6 0.028 rpoB (I) G1546T GAC/TAC D516Y
RifR-4 0.839 6 0.018 rpoB (—) A443T CAG/CTG Q148L
RifR-5 0.806 6 0.023 rpoB (I) A1547G GAC/GGC D516G
RifR-6 0.742 6 0.018 rpoB (I) C1535T TCT/TTT S512F
RifR-7 0.728 6 0.016 rpoB (I) A1538C CAG/CCG Q513P
RifR-8 0.698 6 0.020 rpoB (I) D1594–1605 — D532–535
a Fitness relative to the reference strain (Ref) was measured using competition assays in the environment of the evolution experiment, which does not contain rifampicin.
Errors are 95% confidence intervals estimated from replicate measurements (n 5 12).
b Mutations within common Rif resistance clusters (I and II) of the rpoB gene are indicated (Jin and Zhou 1996).
c Nucleotide and amino acid changes are relative to the coordinates of the E. coli rpoB gene.
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Beneficial mutations conferring larger selective advan-
tages are accessible to test strains with lower initial fitness
(fig. 2a). Strains with neutral or only slightly deleterious
rpoB mutations evolve initial beneficial mutations with fit-
ness effects similar to the reference strain, whereas the
strains with the lowest initial fitness acquire beneficial mu-
tations that confer at least twice this advantage. This over-
all trend is significant: Linear regression indicates a positive
slope for the relationship (P 5 0.003) such that a strain’s
initial fitness defect is highly predictive of the magnitude of
its first successful beneficial mutations (r2 5 0.67). How-
ever, the slope of this relationship is also much less than
one (P 5 0.0001), indicating that the increase in evolvabil-
ity for a strain with a deleterious rpoB mutation is not
enough to compensate wholly for the defect. On average,
the predicted difference in relative fitness between evolved
RifR and evolved reference strains, each with a single
beneficial mutation, is 66% of the difference between their
ancestors. The fitness increases measured directly by
competing clones isolated from three RifR-8 populations
at generation 128 (just as the first beneficial mutations near
fixation) against their RifR ancestor corroborate the selec-
tion coefficients inferred from the marker divergence
analysis (fig. 3).

In contrast, the effective rate (l) at which the first suc-
cessful beneficial mutations occur in a test strain does not
depend on that strain’s fitness defect (fig. 2b). The best fit
slope for this relationship is not significantly different from
zero (see Materials and Methods). The average l estimate
from all eight RifR isolates and the wild-type control is 6.6�
10�8 per generation. This value is close to the reciprocal of
the effective population size for this experiment (1/Neff5 8�
10�8 cell�1) after correcting for the fluctuations in

FIG. 2. Trends in single-step and multiple-mutation evolvability. The
effects of deleterious RifR mutations and evolved beneficial
mutations are reported as additive selection coefficients normalized
to the fitness of the reference Escherichia coli strain. Thus, the
competitive fitness of an evolved RifR strain relative to the reference
strain is one minus its initial fitness defect (d) plus the first
successful mutation’s selective advantage (s) or plus the net fitness
increase over multiple mutations (R). (a) The effective selective
advantage (s) inferred for the first beneficial mutations in each test
strain plotted against that strain’s initial fitness defect (d). Replicate
competition assays (n 5 12) between each rpoB mutant and the
ancestor strain were used to measure d (see Table 1). Values of s
were inferred from a statistical analysis of marker divergence
trajectories (see fig. 1). Error bars are 95% confidence intervals in
both cases. The major axis regression line (dashed) and the line of
equal fitness corresponding to the reference E. coli strain (solid) are
shown. Values of s differ from those in figure 1 because they are

reported here relative to the fitness of the reference strain to allow
direct comparisons of fitness changes with d and R. We found no
evidence of nontransitive fitness interactions that would invalidate
this normalization procedure; that is, the fitness of each evolved RifR

clone relative to its ancestor agreed with that predicted from its
fitness measured relative to the reference strain and the fitness of its
ancestor relative to the reference strain. (b) The effective rate at
which the first successful beneficial mutations occur in each test
strain (l) plotted against that strain’s initial fitness defect (d).
Values of l were inferred from the marker divergence analysis (see
fig. 1). Error bars are 95% confidence intervals. There is no significant
trend in l. The dashed line represents the average value over all
strains. (c) The average fitness increase (R) for each test strain over
the full 640-generation evolution experiment plotted against that
strain’s initial fitness defect (d). Single competitions of each clone
isolated at 640 generations, one from each independently evolved
replicate (n 5 12), against their oppositely marked rpoB mutant
ancestors were used to measure R. These values were normalized
relative to the reference strain’s fitness to allow direct comparisons
of fitness changes with d and s. Error bars are 95% confidence limits.
A separate set of competitions between evolved clones and the RifR

reference strain that was used to establish transitivity gave
essentially identical results. Trend lines are as described in (a). In
all cases, this overall improvement in fitness is at least as great as the
inferred single-step value, and most test strains appear to have
reached at least the fitness level of the reference strain by this time.
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population size during each daily cycle of dilution and re-
growth (Patwa and Wahl 2008). This invariance in the es-
timated value of l is expected if the first beneficial
mutations to fix occurred during the initial outgrowth
phase from the small number of cells used to found each
replicate population and if the distribution of beneficial
mutations is smooth, such that sampling more mutants
always results in finding one with a higher fitness, at least
up to the population size of the experiment.

We found no evidence of reversion mutations or loss of
rifampicin resistance during the evolution experiment. In

many cases, mutation to the ancestral rpoB sequence
would have had a greater selective advantage than the first
beneficial mutations that were successful, but reversion
mutations were evidently too rare to be observed under
our conditions (Levin et al. 2000). Indeed, the average point
mutation rate per base pair in the ancestral strain
(Sniegowski et al. 1997; Barrick et al. 2009) is more than
two orders of magnitude lower than the average l for ben-
eficial mutations in these experiments, suggesting that any
given beneficial mutation that we observed in one of our
experiments was drawn from a pool of hundreds of poten-
tial beneficial mutations of roughly similar advantage.

We also examined the total fitness increase of each test
strain over all 640 generations of the evolution experiment
by isolating a single evolved genotype with the predomi-
nant marker state from each final population and perform-
ing head-to-head competitions between these clones and
their RifR ancestors (fig. 2c). It is common for multiple ben-
eficial mutations to arise in competing lineages before any
one mutation completes a selective sweep in large asexual
populations (Fogle et al. 2008; Barrick and Lenski 2009), and
reversals in marker trajectories sometimes occur when
more fit multiple mutants in one marker state surpass
the single mutants in the other marker state that were
responsible for the initial divergence (fig. 1). Genotypes
that dominate each population by 640 generations have
typically accumulated multiple beneficial mutations, and
success at this point is dictated by integrating evolutionary
dynamics over paths in the fitness landscape. The overall
trend in this sustained multistep evolvability is very similar
to that for single-step evolvability. Once again, there is a sig-
nificantly positive slope to the regression (P 5 0.00008),
and a strain’s initial fitness defect is highly correlated with
its evolvability (r2 5 0.86). The slope is still less than one
(P 5 0.001), indicating that the difference in fitness be-
tween evolved RifR and evolved reference strains persists,
although it has decreased to 43%, on average, of the differ-
ence between their ancestors.

It is not surprising, perhaps, that lower fitness E. coli
strains with rpoB mutations are more evolvable than their
progenitors. Classical descriptions of peak climbing, includ-
ing Fisher’s geometric model, formalize this intuitive expec-
tation (Orr 1998), and many studies of microbes have found
rapid compensatory adaptation after deleterious mutations
(Lenski 1988; Burch and Chao 1999; Levin et al. 2000; Moore
et al. 2000; Reynolds 2000). Our experiments are unique,
however, in how they systematically test a range of fitness
defects and quantify evolvability on multiple timescales. In
particular, we show that marker divergence experiments
usefully summarize complex mutational neighborhoods in
terms of effective parameters that reflect the abilities of dif-
ferent strains to adapt in a single step, given a specific
environment and population structure.

The precision with which the fitness cost of each rpoB
mutation predicts its effect on evolvability is striking. To
the extent that the fitness landscapes on which biological
organisms evolve have general properties and are not dom-
inated by idiosyncratic interactions between mutations,

FIG. 3. Fitness measurements of individual clones isolated near the
end of the first selective sweep agree with estimates from the marker
divergence analysis. We isolated six clones from each of three
representative RifR-8 populations at generation 128 and measured
their fitness. The marker trajectories to this point are depicted on the
left, and each bar on the right represents a clone isolated from the
indicated RifR-8 population. Gray and white bars denote the fitness of
Ara� and Araþ isolates, respectively, measured relative to the
reciprocally marked RifR-8 ancestor strain in competition assays. Error
bars are 95% confidence intervals estimated from replicate
competitions (n 5 6). Based on the marker divergence trajectory
analysis, the effective selective advantage for the first single-step
beneficial mutations to fix in the RifR-8 background is estimated as
0.30. For replicate populations #1 and #3, where one color dominates,
the average fitnesses of the six evolved clones are 1.28 and 1.34,
respectively. These values are thus in close agreement with the
marker divergence estimate, and 10 of the 12 RifR-8 populations show
marker dynamics similar to these examples (see fig. 1). In contrast,
population #2 is one of two RifR-8 populations where the marker
ratio trajectory diverged much more slowly. This difference appears
to reflect, in part, clonal interference from beneficial mutations in the
opposite marker background because an Ara� (red) clone isolated
from this population has a fitness of 1.12 ± 0.05 (95% confidence
interval) relative to the ancestor. This population also appears to
have not discovered mutations as beneficial as those found in most
other populations, given that the average relative fitness of all Araþ

(white) clones is only 1.19 at generation 128. Overall, these
measurements of evolved isolates are consistent with the conclusions
of the marker divergence analysis regarding the average sizes of the
first beneficial mutations to sweep in the Rif-8 background.
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the simple relationship found here may thus serve as a use-
ful null model for future experiments. Nonetheless, many
questions remain. Do other deleterious mutations cause
similar proportional increases in evolutionary potential?
Do mutations in certain genes make microorganisms sub-
stantially more or less evolvable than expected from their
fitness effects under this null model? Do beneficial muta-
tions that are fixed during long-term adaptation to an
environment invariably reduce evolvability, or are more
evolvable genetic architectures favored even on microevo-
lutionary timescales?

Supplementary Material
Supplementary figures S1 and S2 are available at Molec-
ular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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