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Most mitochondrial proteins are synthesized in the cytosol of eukaryotic cells as precursor proteins carrying N-terminal
extensions called transit peptides or presequences, which mediate their specific transport into mitochondria. However,
plant cells possess a second potential target organelle for such transit peptides, the chloroplast. It can therefore be as-
sumed that mitochondrial transit peptides in plants are exposed to an increased demand of specificity, which in turn leads
to reduced degrees of freedom in these transit peptides compared with those of nonplant organisms. Our study investi-
gates this hypothesis using fractal dimension. Statistical analysis of sequence data shows that the fractal dimension of
mitochondrial transit peptides in plants is indeed significantly lower than that from nonplant organisms.

Introduction

Mitochondria are of endosymbiotic origin, that is,
they are derived from the engulfment of a bacterium into a
hitherto unknown host cell, an event that finally resulted in
the development of eukaryotic cells. In the course of evo-
lution, most of the mitochondrial genes were transferred
to the nucleus. As a consequence, most mitochondrial pro-
teins are synthesized in the cytosol of the cell as precursor
polypeptides carrying cleavable aminoterminal extensions,
named presequences or transit peptides, that mediate trans-
port of the protein “back” into the organelle.

Comparison of such mitochondrial transit peptides
has demonstrated that they 1) can be quite variable in size;
2) contain many positively charged, hydrophobic, and hy-
droxylated amino acid residues; and 3) have a high ten-
dency to form an amphipathic α-helix (von Heijne et al.
1989; Pfanner and Geissler 2001). However, because most
of these comparisons are based on mitochondrial transit
peptides from fungi and mammals (see, e.g., von Heijne
et al. 1989), these conclusions might well be biased and
must not necessarily hold true for all species. This is par-
ticularly obvious for plants because plant cells harbor an
additional class of organelles of endosymbiotic origin, no-
tably chloroplasts (or generally speaking, plastids). These
organelles originate from a second endosymbiotic event in
which a cyanobacterium was engulfed by a eukaryotic host
cell possessing already mitochondria. It can be assumed
that the evolutionary establishment of chloroplasts had an
effect also on the selection pressure operating on mitochon-
drial transit peptides because these transport signals were
suddenly exposed to the situation that a second potential
target organelle was present within the same cell. The sit-
uation was further complicated by the fact that also most
chloroplast genes were phylogenetically transferred to the
nucleus. Again, cleavable transit peptides for the transport
of the corresponding proteins back into the organelles were
developed, which show remarkable similarity to mitochon-
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drial transport signals in terms of N-terminal position and
amino acid composition. Considering this scenario, one
could predict that mitochondrial transit peptides of plant
cells must have adapted to this new situation by develop-
ing a higher degree of specialization in order to prevent
permanent transport into the wrong organelle. Supporting
evidence for this assumption comes from the observation
that several nuclear encoded proteins show dual targeting
into both mitochondria and chloroplasts because they carry
transit peptides with ambiguous organelle specificity (for a
recent review, see Carrie et al. 2009). The number of pro-
teins identified with such targeting properties has signifi-
cantly increased in the past years suggesting that this is a
much more common phenomenon than originally antici-
pated. Still, it can be assumed that mistargeting is only to
some degree tolerable for the cell and will probably dis-
turb its integrity and the division of labor between the or-
ganelles if it exceeds a certain level.

These considerations led us to the following work-
ing hypothesis: although mitochondrial transit peptides in
general are characterized by high degrees of freedom (df)
in terms of amino acid sequence and composition, plant
mitochondrial transit peptides should be significantly less
variable in this respect. In order to examine this hypothe-
sis experimentally, mitochondrial transit peptides from one
model species each of plants (Arabidopsis thaliana), mam-
malia (Mus musculus), and fungi (Saccharomyces cere-
visiae) were compared by a bioinformatic approach. We
used for this purpose fractal dimension, which is a mea-
sure of complexity of sequence information within a group
of sequences.

Materials and Methods
Estimating the df of Protein Sequences

The estimation of the df of a set of protein se-
quences is a nontrivial task. We interpret the df as the
number of independent dimensions, which are necessary
to span the data space. In our case, the data space is
embedded into the space of all sequences of length m
over the alphabet of the 20 proteinogenic amino acids
Σ = {A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y}.
The m dimensions correspond to the sequence positions
1, . . . ,m, which can take either of the different amino acids
as values.

In our case, the sequences to be analyzed are tran-
sit peptides, which are represented by the 50 N-terminal
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amino acids of the mitochondrial precursor proteins. In or-
der to constitute a functional transit peptide, not all 50 po-
sitions can be filled arbitrarily with amino acids. Instead,
some restrictions do apply which are, however, not yet ex-
plicitly known. Thus, not each of the positions is counting
as an independent dimension and the true dimensionality,
which also accounts for the unknown restrictions, is prob-
ably less than 50. We avoid the explicit estimation of those
restrictions from sequence data, which demands large data
sets. Instead, the true dimensionality is directly estimated
from sequence similarities.

We draw on the concept of correlation dimension,
which is one of several definitions of fractal dimension.
The concept of fractal dimension (Mandelbrot 1977;
Falconer 1990) has different theoretical definitions among
which the Hausdorff dimension is a prominent one. The
general idea is to cover the data space by a number of
nonempty balls. For practical implementations, the defini-
tion of correlation dimension, which we are going to de-
scribe in this section, is more useful.

Correlation Dimension

Let X = {x1,x2, . . .} be a set of objects and di j be the
distance between xi and x j. The correlation integral C(r)
for a given radius r is

C(r) = limsup
N→∞

1
N2

N

∑
i=1

N

∑
j=1

Θ(r−di j). (1)

The specific use of the Heaviside function Θ(b) ={
0 , if b� 0
1 , else

indicates whether two objects have a dis-

tance smaller than r. So, the inner sum over j counts how
many objects are in a ball of radius r centered at xi. The
term after the limit denotes the fraction of pairs of vec-
tors with an index smaller N and which are closer than r.
The limit is derived by assuming an infinite set of objects
with respective distances. The correlation dimension d is
the rate at which the logarithm of the correlation integral
decreases when r is shrinking.

d = lim
r→0

logC(r)
logr

. (2)

In practice, only finite data sets are available. A popu-
lar heuristic method to estimate correlation dimension from
finite data is by Grassberger and Procaccia (1983). When
dealing with finite data, the original definition of the corre-
lation integral equation (1) cannot be used due to the limit
N → ∞. Note that the equation can be seen as an average
(outer sum with an factor of 1/N) of N fractions each giving
the fraction of objects contained in a ball (inner sum with
an factor of 1/N). A standard heuristic explained in Sprott
(2003), which is used to get more robust estimates of the
fraction of data contained in a ball, is to leave out the center
point that induces the ball. This could lead to empty balls
for small radii. The empty balls must be filtered out before
the computation of the correlation integral in order to avoid
distortion of the estimate of the correlation dimension.

We denote by p̂i the estimate of the fraction of data
contained in the ith ball of radius r:

p̂i(r) =
1

N−1

N

∑
j=1,i�= j

Θ(r−di j). (3)

In order to avoid empty balls in the following formulas,
we denote by N̂(r) the number of nonempty balls, which is
basically the number of p̂is that are larger than zero. Note
that N̂(r)�N. Additionally, let Î(r)⊆{1, . . . ,N} the index
set of those nonzero p̂i(r)s.

The Grassberger–Procaccia algorithm (Grassberger
and Procaccia 1983) estimates the correlation dimension
by computing an estimate of the correlation integral for
several representative values r1,r2, . . . for r. In order to
estimate the correlation integral for a fixed r, the algo-
rithm computes the average of the N̂(r) nonzero fraction
estimates p̂i(r).

Ĉ(r) =
1

N̂(r)

N̂(r)

∑
i∈Î(r)

p̂i(r). (4)

Then, logĈ(r) is plotted versus logr in the so-called log–
log plot and a line is fitted to the points of the linear part of
that curve. Correlation dimension is estimated as the slope
of the line fitted to the linear part of the curve in the log–log
plot.

Simple Examples

We illustrate the idea behind correlation dimension by
two simple examples. Assume the given data set is a finite
sample of points, which are uniformly distributed in the
two-dimensional plane (fig. 1A). The number of points in
a ball of radius r around a particular point xi is approxi-
mately proportional to the area covered by the ball, which
is πr2. Thus, the correlation integral grows nearly quadrat-
ically for medium values of r. Figure 1C shows the cor-
responding log–log plot. The slope is estimated by fitting
a line to the marked points. In the log–log plot, the lin-
ear part of the lower curve has a slope close to two. This
corresponds to the fact that the original data are uniformly
distributed in the two-dimensional plane. The tail for small
values for r is to be ignored because in this area, the corre-
lation integral depends on balls including only few points.
The part for very large radii is likewise not informative be-
cause in this case, the balls include all points and, therefore,
the correlation integral cannot grow further.

In the second example, points are sampled from a line,
which is arbitrarily embedded within the two-dimensional
space (fig. 1B). The number of points in a ball of radius r
around a particular point xi is approximately proportional
to the length of the line covered by the ball. Thus, the corre-
lation integral grows almost linearly. In the corresponding
log–log plot, the linear part of the upper curve has therefore
a slope close to one (fig. 1C).

Application of Fractal Dimensionality to Sequences

A common method to compare biological sequences
is to align two sequences and compute a similarity score
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FIG. 1.—Example data with N = 200 points uniformly sampled from
a plane (a) and from a line (b). Radius versus correlation integral for both
data sets (c) and the slopes of the fitted lines, which estimate correlation
dimensions. The lines are fitted to the marked points.

from such alignments. Therefore, we have first computed a
similarity score based on alignments for each pair of transit
peptides sequences. Then, the correlation dimension was
calculated from these similarity scores.

Alignments help detect biologically relevant similar-
ities between protein sequences. The basic idea behind an
alignment between two sequences A and B is to find a trans-
formation from A to B with maximal similarity score in
terms of simple edit operations like insert, delete, match,
and mismatch. In order to compute an alignment with

maximal similarity score, parameters are needed to specify
the scores of basic transformation operations. As we are
comparing whole transit peptide sequences, we perform
global alignments instead of local ones. For the computa-
tion of pairwise alignments, we have applied the standard
algorithm ClustalW (Thompson et al. 1994).

In our work, we chose the Blosum62 matrix as score
matrix for matches and mismatches. Furthermore, gaps are
penalized with negative scores for gap opening and gap ex-
tension. We used a standard parameter combination for gap
opening and gap extension, namely−10 and −0.1, respec-
tively, which represents the default setting in ClustalW.

The direct output of such an alignment is the maxi-
mal similarity score of the whole transformation. However,
those direct outputs are not comparable for different pairs
of sequences. As the computation of the correlation inte-
gral averages over the number of objects within balls of
the same radii but different centers, such a comparison of
similarity scores is implicitly assumed. Pairwise alignment
in ClustalW already does such a normalization (Thompson
et al. 1994), namely by dividing the number of identi-
cal sequence positions in the alignment by the number of
matched residues 0 and multiplying by 100. This defines a
similarity functions that ranges from 0 to 100.

Correlation dimension is defined in terms of distances
instead of similarities. When distances are small, the corre-
sponding similarities are large. Therefore, the definition of
correlation integral needs to be adapted to handle similari-
ties. We adapt p̂i(r) that was previously defined in equation
(3) by flipping the difference in the argument of the Heav-
iside function:

p̂i(r) =
1

N−1

N

∑
j=1,i�= j

Θ(si j− r). (5)

All other equations remain unchainged.

Data

The data sets used were retrieved from the
SwissProt/UNIProt database, release 14.1 (http://www.
uniprot.org). All entries from mouse (M. musculus), yeast
(S. cerevisiae), and Arabidopsis (A. thaliana) that have a
location attribute containing “mitochondrion” and a topic
attribute containing “transit peptide” were collected. Note
that the data also include proteins that are only predicted to
be mitochondrial proteins. However, SwissProt/UNIProt is
quite conservative with those annotations. We obtained 319
entries for yeast, 427 for mouse, and 224 for Arabidopsis.
Because the lengths of the transit peptides were often not
known, the 50 N-terminal amino acids of each protein se-
quence were taken as putative transit peptides.

For each data set of transit peptides, we computed
all normalized pairwise alignment scores by ClustalW
(version 1.7) using the slow and more accurate align-
ment method. Note that the slow alignment methods im-
plemented in ClustalW are essentially the basic methods
known as Needleman–Wunsch alignments. As we did
not use multiple alignments but pairwise alignments
only, ClustalW is sufficient. New alignment tools like
T-COFFEE (Notredame et al. 2000) or MUSCLE (Edgar
2004) offer faster approximations of pairwise alignments
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or more accurate multiple alignments. Both features are not
needed in this project.

Thus, in total, a quadratic matrix with normalized
pairwise similarities was derived for each set of transit
peptides.

Results

In the first experiment, the correlation dimension of
each of the three data sets of transit peptides is calculated
by the Grassberger–Procaccia algorithm. In order to avoid
any bias from the different sizes of the data sets, correla-
tion dimension is not calculated on the full data sets but on
random samples of identical size.

We use a more sophisticated sampling method,
namely bootstrap sampling (Efron and Tibshirani 1998).
The general idea of bootstrap is to construct a bootstrap
sample from a given original data set of size N by randomly
sampling N objects with replacement. Because sampling
with replacement may choose some data objects more
than once, a bootstrap sample may include duplicates. As-
suming the original data does not include any duplicates,
choosing the objects uniformly with replacement puts on
average about 63% unique objects into a bootstrap sam-
ple, whereas the rest are duplicates. The bootstrap sam-
pling method allows to build random samples as large as
the original data set.

To construct comparable bootstrap samples for each
of the three different data sets, the two larger ones
(S. cerevisiae and M. musculus) need to be downsampled
to the size of the A. thaliana data set, which is N = 224. In
order to construct a bootstrap sample of size N from a data
set with size larger N, the first step is to draw N objects
from the original data set without replacement. The actual
bootstrap sample is generated in a second step by sam-
pling N objects with replacement from the objects drawn
in the first step. Both steps are repeated to generate the next
bootstrap sample. Using such a two-step procedure instead
of directly sampling N objects with replacement from the
original data set keeps the percentage of unique objects in
the bootstrap samples at about 63% of the sample size N
across all three data sets.

For each estimation of the correlation dimension of
a data set, a random bootstrap sample is computed from
the original data as described above. The correlation inte-
gral is computed for several radii and the logarithm of the
similarity radius is plotted versus the logarithm of the cor-
relation integral. A line is fitted to the linear part of that
curve and the slope serves as an estimate of correlation
dimension.

Figure 2 shows for each of the three data sets the re-
sults derived from only five random bootstrap samples. The
absolute values of the slopes are shown in the insets of
the figures. Because visual comparison across the figures
is difficult, representative log–log plots of each data set
are combined in figure 3. The values of the slopes calcu-
lated for each sample suggest that the transit peptides of
A. thaliana have a lower correlation dimension than those
of S. cerevisiae and M. musculus.

In order to substantiate the results, the calculation
was repeated with 1,000 random bootstrap samples each

FIG. 2.—Log–log plots and calculated values of correlation dimen-
sion (slope) for all data sets, (A) Mus musculus; (B) Saccharomyces cere-
visiae; and (C) Arabidopsis thaliana), using ClustalW with 10, 0.1 as gap
opening and gap extension parameters, respectively. In each case, five ex-
amples are shown. The calculated slopes of the fitted lines in those exam-
ples are shown in the insets.

of the transit peptides of S. cerevisiae, M. musculus, and
A. thaliana. The means of the calculated correlation di-
mensions including error bars showing the standard devi-
ations (SDs) derived from the results of the 1,000 random
bootstrap samples are depicted in figure 4. Again, it be-
comes obvious that the mitochondrial transit peptides of
A. thaliana have a lower correlation dimension than those
of S. cerevisiae and M. musculus.

In order to examine to what extent the results of
the calculated correlation dimensions are sensitive to the
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FIG. 3.—Comparison of log–log plots and calculated values of cor-
relation dimension (slope) for all data sets. For further details, see the
legend to figure 2.

size of the bootstrap samples used, we varied the sample
size N ∈ {75,100,125,150,200,224}. The maximal sam-
ple size is determined by the smallest data set, which in
our case is that of A. thaliana. We generated for each
data set and sample size 1,000 bootstrap samples and esti-
mated the correlation dimension for each bootstrap sample.
Subsequently, we derived the mean and SD from the 1,000
bootstrap samples generated for each particular sample
size. Figure 5A shows that with growing sample size, the
calculated correlation dimension of the transit peptides of
A. thaliana, on the one hand, and those of S. cerevisiae and
M. musculus, on the other hand, drift apart.

The visual impression that the transit peptides of
A. thaliana have a lower correlation dimension than those
of S. cerevisiae and M. musculus is verified by t-tests.
In general, a statistical test like the t-test consists of a
null hypothesis, which states the opposite of the obser-
vation. Loosely spoken, it plays the role of the “devil’s
advocate.” In our case, the null hypotheses are that the
means of the correlation dimension of the transit pep-
tides of S. cerevisiae and A. thaliana as well as those of
M. musculus and A. thaliana are equal. Both null hy-
potheses can safely be rejected considering that the respec-
tive p values become numerically 0, which is obviously
lower than any reasonable standard significance level. This
demonstrates the significance of the observation that the
correlation dimension of the transit peptides of A. thaliana
is smaller than those of S. cerevisiae and M. musculus.
As a kind of control, the null hypothesis that the means
of the correlation dimension of the transit peptides of
S. cerevisiae and M. musculus are equal is analogously
tested. Remarkably, the resulting p value is 0.1075 in
this instance, which does not even allow to reject the
null hypothesis at a significance level of only 10%. Thus,
our analysis based on correlation dimension does not
reveal significant differences between S. cerevisiae and
M. musculus.

Effect of Data Set Variation

In order to examine if the results described so far have
been biased by certain parameters of the data examined,

FIG. 4.—Means of the calculated correlation dimensions of Mus
musculus (Mus), Saccharomyces cerevisiae (Saccharomyces), and Ara-
bidopsis thaliana (Arabidopsis) taken from 1,000 random bootstrap sam-
ples each (N = 224). The error bars show the respective SD.

the analysis was repeated with modified data sets. The
first modification concerns the size of the selected tran-
sit peptides. In the original analysis, we have taken the
50 N-terminal amino acid residues of each protein as
the mitochondrial targeting signal because the exact size of
the transit peptides was only in few cases experimentally
determined. Several transit peptides are, however, shorter
than 50 residues, and it must therefore be assumed that
the data sets include also significant amounts of mature
protein sequences. This might influence the outcome be-
cause mature protein sequences are presumably exposed
to completely different selective pressure than transit pep-
tides. In order to reduce the potential effect of such mature
sequences, we have performed the analysis also with data
sets containing the 40 N-terminal residues of each protein
only. Though it will lead to C-terminal truncation of those
transit peptides that exceed 40 residues, it will first and
foremost reduce the contamination with mature protein se-
quences. Bootstrap analysis performed with these new data
sets yields essentially similar results as described above:
the transit peptides of A. thaliana have a significantly lower
correlation dimension than those of S. cerevisiae and M.
musculus (figure 5B). Note that the absolute values of the
correlation dimension for transit peptides of length 40 are
lower than for those of length 50 because shortening of the
assumed transit peptides unevitably decreases the variabil-
ity in the data, which in turn leads to lower absolute values
of the correlation dimension.

A second parameter, which might influence the de-
gree of correlation dimension in a given data set are ho-
mologous proteins, which are generally the result of gene
duplication and therefore bound to be quite closely related,
even in their transit peptide sequences. If the number of ho-
mologous proteins within one data set differs significantly
from those of the other data sets, it might well have a strong
influence on the calculated correlation dimension. In or-
der to take this possibility into account, we have strived
to eliminate homologous proteins from all three data sets.
For this purpose, we computed alignment scores between
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FIG. 5.—Dependency of correlation dimension on the sample size.
The data shown are means and SD calculated from 1,000 bootstrap sam-
ples each. (A) Original data set with the 50 N-terminal amino acid residues
taken as transit peptides. (B) Data entries as in (A) but taking only the 40
N-terminal residues as transit peptides. (C) Data set as in (A) but devoid
of homologous proteins.

Table 1
Normalized Usage Frequencies of Amino Acids in the Total
Mitochondrial Protein Sequences

Saccharomyces
Amino acid Arabidopsis thaliana Mus musculus cerevisiae

A 0.0764 0.0833 0.0635
C 0.0174 0.0176 0.0107
D 0.0528 0.0462 0.0520
E 0.0670 0.0639 0.0619
F 0.0407 0.0371 0.0424
G 0.0711 0.0721 0.0577
H 0.0209 0.0255 0.0213
I 0.0564 0.0476 0.0644
K 0.0665 0.0577 0.0814
L 0.0947 0.1030 0.0985
M 0.0304 0.0241 0.0219
N 0.0398 0.0316 0.0534
P 0.0421 0.0544 0.0453
Q 0.0289 0.0424 0.0380
R 0.0545 0.0628 0.0505
S 0.0788 0.0677 0.0775
T 0.0504 0.0519 0.0572
V 0.0725 0.0707 0.0602
W 0.0096 0.0131 0.0104
Y 0.0291 0.0273 0.0319

the full protein sequences within each data set and built
groups using the single linkage algorithm (Sibson 1973).
The groups are built such that no sequence entry from two
different groups exceeds the low sequence similarity score
of 30 (ClustalW assigns to each pair of sequences a score
between 100 [very similar] and 0 [not similar]). Thus, el-
ements of different groups have quite divergent sequences
and are considered to be nonhomologous. For the subse-
quent bootstrap experiments in which N groups are picked
randomly, only one representant from each group is ran-
domly chosen. Thus, each bootstrap sample contains at
most one entry from a given group, which prevents that
homologous entries are present when computing the cor-
relation dimension of a bootstrap sample. Using the cutoff
value of 30 for sequence similarity, 154 groups are defined
for the smallest data set (Arabidopsis), which in turn also
limits the maximal sample size for this experiment to 154.
The results show that even after elimination of duplicates,
the transit peptides of A. thaliana have a lower correla-
tion dimension than those of S. cerevisiae and M. musculus
(figure 5C). Due to the smaller maximal sample size of
154, the difference is not as pronounced as with the max-
imal sample size of 224 of the original experiment (figure
5A), but it is still statistically significant with numerically
zero p values. Actually, if identical sample sizes are com-
pared between the different experiments, the differences
in variability between the transit peptides of Arabidop-
sis, mouse, and yeast are comparable in the two experi-
ments (cf. figures 5A and C). The absolute values of the
correlation dimensions in the data sets devoid of homol-
ogous proteins are slightly increased compared with the
corresponding values in the original experiments though,
due to the lack of redundancy in the data sets, which
slightly increases the variability and, in turn, the correlation
dimension.

Finally, the usage of amino acid residues in total pro-
tein sequences (transit peptide plus passenger protein) is
analyzed to ensure that the observed effect is not caused
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by different amino acid preferences in the three organ-
isms. The normalized usage frequencies are computed
from pooled sequences, that is, all sequences are concate-
nated and the normalized frequencies are computed as the
number of occurrences of a particular amino acid divided
by the total length of the concatenated sequence.

The normalized usage frequencies are shown in
table 1. Except for Q and W, which are both quite rare
amino acids in proteins and can thus not be responsible
for the observed differences in correlation dimension, the
normalized usage frequency of amino acid in A. thaliana
is close to those of S. cerevisiae and M. musculus. This is
in line with the assumption that the overall usage of amino
acids is similar in all three organisms and confirms that A.
thaliana has no general bias in the amino acid usage. Thus,
it must be concluded that the significantly lower correlation
dimension of mitochondrial transit peptides of A. thaliana
is a consequence of reduced df in the composition of these
protein transport signals.

Discussion

During the past decade, several algorithms were de-
veloped to predict the subcellular localization of proteins
by examining their N-terminal targeting sequences. Ex-
amples are the neural network–based approaches TargetP
(Emanuelsson et al. 2000) and Predotar (Small et al. 2004).
Both examine the 100 N-terminal amino acids and learn
from training examples to discriminate between mitochon-
drial transit peptides, chloroplast transit peptides, and other
transport signals. TargetP predicts a score for each of the
first 100 amino acids giving a likelihood whether it rep-
resents a transport signal and classifies on that basis the
target organelle of the protein. Predotar uses information
on net charge, hydrophobicity, and amino acid distribu-
tion to predict the target organelle. Other approaches clas-
sifying proteins according to their targeting sequence are
PSORT and MitoProtII. PSORT (Nakai and Horton 1999)
is a rule-based expert system and computes the likelihood
that a given protein belongs to a specific target. MitoProt
II (Claros and Vincens 1996) can only distinguish between
mitochondrial and nonmitochondrial transport signals.

Neither of these analyses has considered the particu-
larities of plant transit peptides. Instead, the training data
used by the described algorithms collect mitochondrial
transit peptides from plants, animals, and fungi within a
single group. Thus, the potential differences between mito-
chondrial transit peptides of plants and animals or fungi are
neglected. This position is supported in Emanuelsson et al.
(2000) by citing a cluster analysis (Schneider et al. 1998),
which found no species-correlated differences between mi-
tochondrial transit peptides. However, the data basis of that
study used only 14 transit peptides from plants among 144
transit peptides in total, which does not allow any statis-
tical conclusions. In contrast, our results strongly suggest
that there are species-dependent differences among mito-
chondrial transit peptides. Thus, the predictions obtained
by TargetP and Predotar have to be reconsidered when ana-
lyzing sequences from plants. It is furthermore remarkable
that both programs are used to annotate the transit peptides
in the Uniprot/Swissprot database.

Information theoretic methods have already been used
before to analyze biological phenomena. However, al-
though those analyses often try to find commonalities be-
tween different sequences or regions of sequences using
mutual information, for example, to describe molecular co-
evolution (Codoñer and Fares 2008), our approach is based
on fractal dimension, which detects complexity differences
between data sets.

To our knowledge, our study is the first one investi-
gating the hypothesis that mitochondrial transit peptides of
plants are more specialized and consequently have less df
than those of animals or fungi. This hypothesis is tested by
estimating correlation dimension of sets of transit peptides
from three example organisms. Our results show that the
correlation dimension of transit peptides from A. thaliana
is significantly lower than that from M. musculus and
S. cerevisiae, in line with the assumption that plant mi-
tochondrial transit peptides are exposed to increased se-
lective pressure concerning organelle specificity. In future
work, these analyzes will be extended to further organisms
to evaluate the significance of this observation for plants in
general.
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