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Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over
10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability.
Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these
profiles to implement Neighbor-Joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest
neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different
characters, a distance matrix requires O(N2) space and O(N2L) time, but FastTree requires just O(NLa+N

√
N) memory

and O(N
√

N log(N)La) time. To estimate the tree’s reliability, FastTree uses local bootstrapping, which gives another
100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct
16S ribosomal RNAs in 17 h and 2.4 GB of memory. Just computing pairwise Jukes–Cantor distances and storing them,
without inferring a tree or bootstrapping, would require 17 h and 50 GB of memory. In simulations, FastTree was slightly
more accurate than Neighbor-Joining, BIONJ, or FastME; on genuine alignments, FastTree’s topologies had higher
likelihoods. FastTree is available at http://microbesonline.org/fasttree.

Introduction

Inferring phylogenies from biological sequences is
the fundamental method in molecular evolution and has
many applications in taxonomy and for predicting structure
and biological function. In general, sequences are identi-
fied as homologous and aligned, and then a phylogeny is
inferred. Large alignments can be constructed efficiently,
in time linear in the number of sequences, by aligning the
sequences to a profile instead of to each other, as with
position-specific Blast or hmmalign (Schaffer et al. 2001;
http://hmmer.janelia.org/).

Given an alignment, Neighbor-Joining and related
minimum evolution methods are the fastest and most scal-
able approaches for inferring phylogenies (Saitou and Nei,
1987; Studier and Keppler, 1988; Desper and Gascuel,
2002). All these methods rely on a distance matrix that
stores an estimate of the evolutionary distance between
each pair of sequences. Computing an entry in the distance
matrix requires comparing the characters at each position
in the alignment and hence requires O(L) time, where L is
the number of positions. Thus, the distance matrix takes
O(N2L) time to compute, where N is the number of se-
quences, and O(N2) space to store.

Given a distance matrix, Neighbor-Joining performs
a greedy search for a tree of minimal length, according
to a local estimate of the length of each branch (Gascuel
and Steel 2006). More specifically, Neighbor-Joining be-
gins with the tree as a star topology, and it iteratively re-
fines the tree by joining the best pair of nodes together,
until the tree is fully resolved. Each step considers O(N2)
possible joins, so the standard Neighbor-Joining algorithm
requires O(N3) time to infer a tree from a distance matrix.
This can be reduced to O(N2) or O(N2 logN) time, either by
using heuristics to consider fewer joins (Elias and Lager-
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gren 2005; Evans et al. 2006) or by using additional O(N2)
memory (Simonsen et al. 2008; Zaslavsky and Tatusova
2008). FastME is another minimum evolution method that
takes only O(N2) time (Desper and Gascuel 2002). With
any of these optimized methods, the O(N2L) time to com-
pute the distance matrix dominates the time.

As DNA sequencing accelerates, the memory and
CPU requirements of the distance matrix approach are
becoming prohibitive. For example, an alignment of full-
length 16S ribosomal RNAs (rRNAs) contains over
160,000 distinct sequences (DeSantis et al. 2006; http://
greengenes.lbl.gov). Similarly, the MicrobesOnline data-
base, which provides phylogenies for all protein families
from prokaryotic genomes, contains protein families with
over 100,000 distinct sequences (Alm et al. 2005; http://
www.microbesonline.org/). The distance matrix for fami-
lies with 100,000–200,000 members requires 20–80 GB
of memory to store (a 4-byte floating-point value for each
of N(N−1)/2 pairs). Although computers with this much
memory are available, the typical node in a compute clus-
ter has an order of magnitude less memory. Furthermore,
DNA sequencing technology is improving rapidly, and the
distance matrix’s size scales as the square of the family’s
size, so we expect these problems to become much more
severe. Finally, most of the methods that construct a tree
from a distance matrix in O(N2) time, such as FastME and
the exact O(N2) implementations of Neighbor-Joining,
require additional O(N2) memory.

Whatever the method used, inferred phylogenies often
contain errors, and so it is important to estimate the relia-
bility of the result (Nei et al. 1998). The standard method
to estimate reliability is to use the bootstrap: to resample
the columns of the alignment, to rerun the method 100–
1,000 times, to compare the resulting trees to each other or
to the tree inferred from the full alignment, and to count the
number of times that each split occurs in the resulting trees
(Felsenstein 1985). (A split is the two sets of leaves on ei-
ther side of an internal edge.) Unfortunately, bootstrapping
is a minimum of 100 times slower than the underlying phy-
logenetic inference, and comparing the trees to each other
is also a nontrivial computation. In principle, the resampled
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trees could be compared with the original tree in O(N2)
time and O(N) space by hashing the splits in the tree. How-
ever, the tree comparison tools that we are aware of require
O(N3) time and O(N2) space.

Although building phylogenetic trees for large gene
families is challenging, it is important to do so and not
just to build trees for small sets of selected homologs.
Analyzing all the sequences is important for taxonomy,
for predicting gene function, for classifying environ-
mental DNA sequences, and for identifying functional
residues (Eisen 1998; Lichtarge et al. 2003; Engelhardt
et al. 2005; von Mering et al. 2007). Furthermore, omit-
ting sequences might change the biological interpreta-
tion of the result, especially in prokaryotes: because of
horizontal gene transfer, it is difficult to know which
homologs are relevant without building a tree. Finally,
for Web sites that support interactive use of phyloge-
netic trees, it is desirable to compute trees for all the
genes beforehand (Li et al. 2006; http://www.treefam.org/;
http://www.microbesonline.org/).

Our Approach

We present FastTree that uses four ideas to reduce
the space and time complexity of inferring a phylogeny
from an alignment (fig. 1). First, FastTree implements
Neighbor-Joining by storing profiles for the internal nodes
in the tree instead of storing a distance matrix. Each pro-
file includes a frequency vector for each position, and the
profile of an internal node is the weighted average of its
children’s profiles. For example, if we join two leaves i
and j, and i has an A at a position and j has a G, then
the profile of i j at that position will be 50% A and 50%
G (and 0% for other characters). The intuition behind us-
ing profiles is that the average of the distances between the
sequences in two subtrees A and B equals the distance be-
tween profile(A) and profile(B) because profile(A) is the av-
erage of the sequences in A. FastTree uses these profiles to
compute the distances between internal nodes in the tree
and also the total distance from a node to all other nodes,
which is also required for Neighbor-Joining. The profiles
require a total of O(NLa) space, where a is the size of
the alphabet (20 for protein sequences and 4 for nucleotide
sequences), instead of O(N2) space for the distance ma-
trix. However, the time required for Neighbor-Joining with
exhaustive search rises from O(N3) to O(N3La) because
every distance has to be recomputed on demand in O(La)
time.

Second, FastTree uses a combination of previ-
ously published heuristics (Elias and Lagergren 2005;
Evans et al. 2006) and a new “top-hits” heuristic to
reduce the number of joins considered. Whereas tradi-
tional Neighbor-Joining considers O(N3) possible joins
and optimized variants have considered O(N2) possible
joins (the size of the distance matrix), FastTree consid-
ers O(N

√
N logN) possible joins. Thus, in theory, Fast-

Tree takes O(N
√

N log(N)La) time. In practice, FastTree
is faster than computing the distance matrix. These heuris-
tics require additional O(N

√
N) memory, raising the total

storage requirement for FastTree to O(NLa+N
√

N), which
is still much less than O(N2).

Third, FastTree refines the initial topology with near-
est neighbor interchanges (NNIs). Given an unrooted tree
((A, B), (C, D)), where A, B, C, and D may be sub-trees
rather than individual sequences, FastTree compares the
profiles of A, B, C, and D and determines whether alternate
topologies ((A, C), (B, D)) or ((A, D), (B, C)) would reduce
the length of the tree. These NNIs are similar to those of
FastME, although FastME uses a distance matrix (Desper
and Gascuel 2002). FastTree’s NNIs take O(N log(N)La)
additional time and O(NLa) additional space. In practice,
the NNIs take much less time than computing the initial
topology, and they improve the quality of the tree.

Fourth, FastTree computes a local bootstrap value
for each internal split ((A, B), (C, D)) by resampling the
columns of the profiles and counting the fraction of resam-
ples that support ((A, B), (C, D)) over the alternate topolo-
gies ((A, C), (B, D)) or ((A, D), (B, C)). The local bootstrap
has been used for maximum likelihood trees (Kishino et al.
1990) but cannot be used with distance matrices. Com-
puting the local bootstrap takes O(bNLa) time, where b
is the number of bootstrap samples. Even with 1,000 re-
samples, this takes less than a minute for an alignment of
over 8,000 protein sequences and 394 columns. Thus, local
bootstrap gives FastTree an additional 100-fold speedup
over distance matrix methods, in which the entire computa-
tion must be repeated for each sample. However, the local
bootstrap should be interpreted more conservatively than
the traditional bootstrap. Whereas traditional bootstrap
estimates the probability that the split is correct (Efron
et al. 1996), local bootstrap estimates the probability that
the split is correct if we assume that A, B, C, and D are
subtrees of the true tree.

Below, we describe FastTree in more detail. Then, we
show that in realistic simulations, FastTree is slightly more
accurate than other minimum evolution methods such as
Neighbor-Joining, BIONJ, or FastME. On genuine align-
ments, FastTree topologies tend to have higher likelihoods
than topologies from other minimum evolution methods,
which also suggests that FastTree gives higher quality re-
sults. For both simulated and genuine alignments, Fast-
Tree’s heuristics do not lead to any measurable reduction in
quality. For large families, FastTree requires less CPU time
and far less memory than computing and storing a distance
matrix. Finally, we show that the local bootstrap is a good
indicator of whether each split in the inferred topology
is correct, and it is orders of magnitude faster than the
traditional bootstrap. We believe that FastTree is the first
practical method for computing accurate phylogenies,
including support values, for alignments with tens or hun-
dreds of thousands of sequences.

Materials and Methods
FastTree

A rough outline of FastTree is shown at the bottom
of figure 1. Before we explain how FastTree implements
Neighbor-Joining, we explain how it computes distances
between sequences and how it computes distances between
profiles. We then explain how it computes distances be-
tween internal nodes and how it calculates the Neighbor-
Joining criterion, which is used to select the best join. We
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FIG. 1.—Overview of FastTree.

also describe the heuristics that it uses to reduce the number
of joins that it considers. Finally, we explain the steps after
Neighbor-Joining: NNIs, the local bootstrap, and estimat-
ing the branch lengths for the final topology. For formulas,
derivations, and technical details, see supplementary note
1 (Supplementary Material online).

Distances between Sequences

FastTree uses both corrected and uncorrected dis-
tances. FastTree corrects the distances for multiple sub-
stitutions during NNIs, computing final branch lengths,
and local bootstrap, but not during Neighbor-Joining.
For nucleotide sequences, FastTree’s uncorrected distance
du is the fraction of positions that differ, and the cor-
rected distance is the Jukes–Cantor distance d = − 3

4 log

(
1− 4

3 du
)
. For protein sequences, FastTree estimates dis-

tances by using the BLOSUM45 amino acid similarity
matrix (Henikoff S and Henikoff JG 1992) and a log cor-
rection inspired by that of scoredist (Sonnhammer and
Hollich 2005). We scaled the BLOSUM45 similarity matrix
into a dissimilarity matrix such that the average dissimilar-
ity between each amino acid and a random amino acid is 1
if we use the nonuniform amino acid frequencies of biolog-
ical sequences. The uncorrected distance du between two
sequences is the average dissimilarity among nongap posi-
tions, and the corrected distance is d =−1.3× log(1−du).
The intuitive justification is that the term within the loga-
rithm ranges from 1 for identical sequences to an expected
value of 0 for unrelated sequences, as with Jukes–Cantor
distances for nucleotide sequences. For both nucleotide
and protein sequences, FastTree truncates the corrected
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distances to a maximum of 3.0 substitutions per site, and
for sequences that do not overlap because of gaps, FastTree
uses this maximum distance.

Distances between Profiles

FastTree uses profiles to estimate the average distance
between the children of two nodes. The profile distance at
each position is the average dissimilarity of the characters.
The uncorrected distance between two profiles is then the
average of these position-wise distances, weighted by the
product of the proportion of nongaps in each of the two
profiles. FastTree computes the distance between two pro-
files in O(La) time by using the eigendecomposition of the
dissimilarity matrix.

The profile distance is identical to the average dis-
tance if the distances are not corrected for multiple sub-
stitutions and if the sequences do not contain gaps. For
example, if we join two sequences A and B together, then
the profile distance

∆(AB,C) =
du(A,C)+du(B,C)

2
.

Of course, we do wish to correct for multiple substitutions,
and in practice, large alignments always contain gaps. In
these cases, the profile-based average becomes an approx-
imation of the average distances used in traditional mini-
mum evolution methods.

First, consider the issue of correcting distances for
multiple substitutions with a formula of the form d ∝
− log(1− du). The average corrected distance between A
and BC is (d(A,B)+d(A,C))/2 or the average of two log-
arithms. However, FastTree cannot compute this average
of logarithms from the profiles. Instead, FastTree uses
the logarithm of averages. This is a close approximation
if the distances are short or if the distances are similar. If
the distances are large, then distances between profiles
may be more accurate than averages of distances (Müller
et al. 2004).

Second, consider what happens if the sequences con-
tain gaps. FastTree records the fraction of gaps at each
profile position, and when computing distances, FastTree
weights positions by their proportion of nongaps. Tradi-
tional Neighbor-Joining implicitly weights the ungapped
columns more highly. For example, consider an alignment
with A = C-, B = GG, and C = CC: ∆(AB,C) = 2/3, but
(du(A,B)+du(A,C))/2= 1/2. Both approaches treat gaps
as missing data, and it is not obvious which is preferable.

Distances between Internal Nodes

Neighbor-Joining operates on distances between in-
ternal nodes rather than on average distances between the
members of subtrees. For example, after joining nodes A
and B, Neighbor-Joining sets

du(AB,C) =
du(A,C)+du(B,C)−du(A,B)

2
.

FastTree instead sets the profile of AB to �P(AB) = (�P(A)+
�P(B))/2 and computes the distance between nodes with

du(i, j) = ∆(i, j)−u(i)−u( j),

where ∆(i, j) is the profile distance and u(i) is the “up-
distance,” or the average distance of the node from its chil-
dren. u(i) = 0 for leaves, and for balanced joins, u(i j) =
∆(i, j)/2. This profile-based computation gives the exact
same value of du(i, j) as Neighbor-Joining after any num-
ber of joins, as long as distances are not corrected for mul-
tiple substitutions and the sequences contain no gaps.

FastTree actually uses weighted joins, as in BIONJ
(Gascuel 1997), rather than the balanced joins. In BIONJ,
the weight of each join depends on the variance of the
distance between two joined nodes, which can also be com-
puted from the profiles. Also, with weighted joins, the for-
mula for the up-distances becomes more complicated.

Calculating the Neighbor-Joining Criterion

Given the distances between nodes, Neighbor-Joining
selects the join that minimizes the criterion du(i, j)−r(i)−
r( j), where i, j, and k are indices of active nodes that have
not yet been joined, du(i, j) is the distance between nodes i
and j, n is the number of active nodes, and

r(i)≡∑
k �=i

du(i,k)/(n−2).

r(i) can be thought of as the average “out-distance” of i
to other active nodes (although the denominator is n− 2,
not n− 1). Traditional Neighbor-Joining computes all N
out-distances before doing any joins, which takes O(N2)
time, and updates each out-distance after each join, which
also takes O(N2) time overall. To avoid this work, FastTree
computes each out-distance as needed in O(La) time by
using a “total profile” T which is the average of all active
nodes’ profiles, as implied by

∑
k �=i

∆(i,k) = n ·∆(i,T )−∆(i, i).

(∆(i, i) is the average distance between children of i, in-
cluding self-comparisons.) If there are gaps, then this is an
approximation. FastTree computes the total profile at the
beginning of Neighbor-Joining in O(NLa) time, updates it
incrementally in O(La) time, and recomputes it every 200
joins to avoid round-off error.

Notice that FastTree does not log correct the distances
during Neighbor-Joining. We considered doing so, but it
reduced FastTree’s accuracy. Perhaps the profile-based out-
distances become inaccurate: the out-distance is an average
of both far and small values, and so the log correction of
the average distance is a poor estimate of the average of
the log-corrected distances.

Selecting the Best Join

FastTree uses heuristics to reduce the number of joins
considered at each step to less than O(n). We first explain
the “top-hits” heuristic. For each node, FastTree records a
top-hits list: the nodes that are the closest m neighbors of
that node, according to the Neighbor-Joining criterion. By
default, m =

√
N. Before doing any joins, FastTree esti-

mates these lists for all N sequences by assuming that if A
and B have similar sequences, then the top-hits lists of A
and B will largely overlap. More precisely, FastTree com-
putes the 2m top hits of A, where the factor of two is a
safety factor. Then, for each node B within the top m hits
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of A that does not already have a top-hits list, FastTree es-
timates the top hits of B by comparing B to the top 2m hits
of A. In theory, this takes a total of O(N2L/m+NmL) =
O(N
√

NL) time to compute and O(Nm) = O(N
√

N) space
to store.

FastTree restricts the top-hits heuristic to ensure that
a sequence’s top hits are only inferred from the top hits of
a “close enough” neighbor. Because of these restrictions,
it is not clear how many sequences will have O(m) close
neighbors and it is not clear if the initial computation of
top-hits lists will truly take O(N

√
NL) time. However, for

large alignments, it takes less time than computing the dis-
tance matrix, so in practice it takes less than O(N2L) time.

FastTree maintains these top-hits lists during
Neighbor-Joining. First, after a join, FastTree computes
the top-hits list for the new node in O(mLa) time by
comparing the node to all entries in the top-hits lists of its
children. Second, after a join, some of the other nodes’ top
hits may point to an inactive (joined) node. When FastTree
encounters these entries, it replaces them with the active
ancestor. Finally, as the algorithm progresses, the top-hits
lists will gradually become shorter as joined nodes become
absent from lists. Thus, FastTree periodically “refreshes”
the top-hits list by comparing the new node to all other
nodes and also by comparing each of the new node’s top
hits to each other. Each refresh takes O(nLa+m2La) time
and ensures that the top-hits lists of O(m) other nodes are
of full length and up-to-date, so FastTree performs O(

√
N)

refreshes, and they take a total of O(N
√

NLa) time.
Besides storing the list of top hits for each node, Fast-

Tree also remembers the best-known join for each node, as
in FastNJ (Elias and Lagergren 2005). FastTree updates the
best-known join whenever it considers a join that involves
that node. For example, while computing the top hits of A,
it may discover that A,B is a better join than B,best(B).

Based on the best joins and the top-hits lists, Fast-
Tree can quickly select a join. First, FastTree finds the
best m joins among the best-known joins of the n active
nodes, without recomputing the Neighbor-Joining crite-
rion to reflect the current out-distances. In principle, this
can be implemented in O(m logN) time per join by us-
ing a priority queue. (FastTree simply sorts the entries,
which adds O(N logN) time per join or O(N2 logN) time
overall.) For those m candidates, FastTree recomputes
the Neighbor-Joining criterion, which takes O(mLa) time,
and selects the best. Furthermore, FastTree does a local
hill-climbing search to find a better join, as in relaxed
Neighbor-Joining (Evans et al. 2006): given a join AB, it
considers all joins AC or BD, where C is in top-hits(A)
or D is in top-hits(B). This can be beneficial because the
out-distances change after every join, so the best join for a
node can change as well. In theory, this takes O(logn) it-
erations (Evans et al. 2006), O(m log(n)La) time per join,
or O(N

√
N log(N)La) time overall. Thus, it takes FastTree

a total of O(N
√

N log(N)La) time to maintain the top-hits
lists and to select all the joins.

Nearest Neighbor Interchanges

After FastTree constructs an initial tree with
Neighbor-Joining, it uses NNIs to improve the tree topol-

ogy. During each round, FastTree tests and possibly rear-
ranges each split in the tree, and it recomputes the profile
of each internal node. The profiles can change even if the
topology does not change because FastTree recomputes the
weighting of the joins.

By default, FastTree does log2(N) + 1 rounds of
NNIs. We chose a fixed number of rounds, instead of
iterating until no more NNIs occur, to ensure fast comple-
tion. We chose roughly log2(N) rounds so that, on a bal-
anced topology, a misplaced node could migrate all the way
across the tree.

The minimum evolution criterion prefers ((A, B), (C,
D)) over alternate topologies ((A, C), (B, D)) or ((A, D),
(B, C)) if d(A,B) + d(C,D) < d(A,C) + d(B,D) and
d(A,B)+d(C,D)< d(A,D)+d(B,C). Here, FastTree uses
log-corrected profile distances, rather than distances be-
tween nodes. The profile distances do not account for the
distances within the nodes, but this does not affect the min-
imum evolution criterion as it increases all distances d(A, ·)
by the same amount.

For larger topologies, FastTree must compute profiles
for additional subtrees before doing this computation. For
example, consider the topology ((A, (B, C)), D, E). Af-
ter Neighbor-Joining, FastTree has profiles for the internal
nodes BC and ABC as well as for the leaves, but to test the
split BC versus ADE requires the profile for DE. FastTree
computes the profile for DE by doing a weighted join of
D and E, using the weighting of BIONJ for a 4-leaf tree
(Gascuel 1997). FastTree stores these additional profiles
along the path to the root and reuses them when possi-
ble. (FastTree computes an unrooted tree but stores it as a
rooted tree.) To ensure that a round of NNIs takes O(NLa)
time and at most O(NLa) additional space, FastTree visits
nodes in postorder (it visits children before their parents).

Local Bootstrap

To estimate the support for each split, FastTree
resamples the alignment’s columns with Knuth’s 2002
random number generator (http://www-cs-faculty.stanford.
edu/knuth/programs/rng.c). FastTree counts the fraction of
resamples that support a split over the two potential NNIs
around that node, much as it does while using NNIs to
improve the topology. If a resample’s minimum evolution
criterion gives a tie, then that resample is counted as not
supporting the split.

Branch Lengths

Once the topology is complete, FastTree computes
branch lengths, with

d(AB,CD) =
d(A,C)+d(A,D)+d(B,C)+d(B,D)

4

−d(A,B)+d(C,D)
2

for internal branches and

d(A,BC) =
d(A,B)+d(A,C)−d(B,C)

2
for the branch leading to leaf A, where d are log-corrected
profile distances.
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Table 1
Topological Accuracy of Tree-Building Methods on Simulated
Protein Alignments with Gaps

Topological Accuracy

Method Distances n = 10 n = 50 n = 250 n = 1,250 n = 5,000

PhyML JTT 0.744a 0.771a 0.817a 0.801a —
FastTree Log-corrected 0.724b 0.763b 0.797b 0.778b 0.763b

FastME Log-corrected 0.716c 0.754c 0.796b 0.777b 0.753c

BIONJ Log-corrected 0.725b 0.754c 0.766c 0.730c 0.723c

BIONJ JTT 0.701c 0.758c 0.777c 0.737c 0.731c

BIONJ JTT + Γ 0.567c 0.625c 0.737c 0.697c —
QuickTree Log-corrected 0.716c 0.746c 0.760c 0.726c 0.716c

QuickTree %Different 0.673c 0.678c 0.699c 0.672c 0.655c

Clearcut Log-corrected 0.682c 0.733c 0.755c 0.723c 0.715c

a Significantly more accurate than FastTree (P< 0.01, paired t-test)
b Not significantly different from FastTree (P> 0.01, paired t-test)
c Significantly less accurate than FastTree (P< 0.01, paired t-test)

Unique Sequences

Large alignments often contain many sequences that
are exactly identical to each other (Howe et al. 2002). Be-
fore inferring a tree, FastTree uses hashing to quickly iden-
tify redundant sequences. It constructs a tree for the unique
subset of sequences and then creates multifurcating nodes,
without support values, as parents of the redundant
sequences.

Testing FastTree

Sources of Alignments

We obtained sequences of members of Clusters of
Orthologous Groups (COG) gene families (Tatusov et
al. 2001) and members of Pfam PF00005 (Finn et al.
2006) from the fall 2007 release of the MicrobesOnline
database (http://www.microbesonline.org/). We aligned
the sequences to the family’s profile, using reverse
position-specific Blast for the COG alignment (Schaffer
et al. 2001) and hmmalign for the PF00005 alignment
(http://hmmer.janelia.org/). As the profiles only include
positions that are present in many members of the family,
these alignments do not contain all positions from the
original sequences. The 16S rRNA alignment is from
greengenes and is trimmed with the greengenes mask
(DeSantis et al. 2006; http://greengenes.lbl.gov).

To simulate alignments with realistic phylogenies and
realistic gaps, we used the COG alignments. In each sim-
ulation, we selected the desired number of sequences
from a COG alignment, we removed positions that were
over 25% gaps, we estimated a topology and branch
lengths with PhyML (Guindon and Gascuel 2003), we esti-
mated evolutionary rates across sites with PHYLIP’s proml
(http://evolution.genetics.washington.edu/phylip.htm), we
simulated sequences with Rose (Stoye et al. 1998), and
we reintroduced the gaps from the original alignment. For
simulations of 5,000 sequences, we used FastTree instead
of PhyML and we assigned evolutionary rates at random.
For N = 10, we simulated 3,100 alignments (10 indepen-
dent runs per family); for N = 50, we simulated 3,099
alignments; for N = 250, we simulated 308 alignments;
for N = 1,250, we simulated only 92 alignments because

some PhyML jobs did not complete, and for N = 5,000, we
simulated 7 alignments, as only seven families contained
enough nonredundant sequences. See supplementary note
2 (Supplementary Material online) for technical details.

CPU Timings

All programs used a single thread of execution.
We used a computer with two dual-core 2.6-GHz AMD
Opteron processors and 32 GB of RAM. However, for the
two long-running maximum likelihood jobs in table 6, we
used a computer with a 2.4-GHz Intel Q6600 quad-core
processor and 8 GB of RAM. The two machines have sim-
ilar performance (about 20% different for FastTree).

To estimate performance on large alignments, we
extrapolated from the largest feasible alignment for that
method and its theoretical complexity. Inferring a tree
from a distance matrix requires O(N2) space and either
O(N2) time (FastME and RapidNJ; Simonsen et al. 2008),
O(N2 logN) time (Clearcut), or O(N3) time (QuickTree
and BIONJ). Computing bootstrap values from resampled
trees with PHYLIP’s consense or with QuickTree’s built-in
bootstrap requires O(N2) space and O(N3) time. For Quick-
Tree, which identifies and removes duplicate sequences,
we used the number of unique sequences rather than the
total number.

Results
Topological Accuracy in Simulations

We tested FastTree and other methods for inferring
phylogenies on simulated protein alignments with realis-
tic topologies, realistic gaps, varying evolutionary rates
across sites, and between 10 and 5,000 sequences. The
simulated alignments ranged from 64 to 1,009 positions
(median 304), with 9% gaps, and on average, pairs of se-
quences within these alignments were 33% identical. For
each alignment and for each method, we counted the pro-
portion of splits that were correctly inferred.

As shown in table 1, FastTree was significantly more
accurate than other minimum evolution methods but was
1–2% less accurate than PhyML, a maximum likelihood
method (Guindon and Gascuel 2003). We will show that
FastTree scales to far larger alignments than current max-
imum likelihood methods can handle. Furthermore, most
of the splits that disagree between minimum evolution and
maximum likelihood trees are poorly supported (Nei et al.
1998). This is true in our simulations as well, even for the
splits that PhyML inferred correctly but FastTree missed
(data not shown). Thus, the practical effect of these differ-
ences may be much less than 1–2%.

After FastTree, the next best method was FastME,
which like FastTree uses NNIs according to the minimum
evolution criterion (Desper and Gascuel 2002). Depend-
ing on the number of sequences, FastTree was slightly
but significantly more accurate than FastME, or the two
methods were tied. FastTree was up to 4% more accu-
rate than BIONJ, a weighted variant of Neighbor-Joining
(Gascuel 1997), when run with FastTree’s log-corrected
distances. BIONJ with log-corrected distances was about
as accurate as BIONJ with maximum likelihood distances
from PHYLIP’s protdist, so FastTree’s distance measure is
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Table 2
The Topological Accuracy of Variants of FastTree on
Simulated Protein Alignments with Gaps

Topological Accuracy

Method N = 250 N = 1,250 N = 5,000

FastTree, default settings 0.797 0.778 0.763
FastTree + extra NNI (20 rounds) 0.797 0.778 0.763
FastTree’s Neighbor-Joining (no NNI) 0.734 0.702 0.698
FastTree, exhaustive search, no NNI 0.733 0.701 —
BIONJ, uncorrected distances 0.731 0.699 0.694
BIONJ, log-corrected distances 0.766 0.730 0.723

adequate. Maximum likelihood distances that were esti-
mated using a model with gamma-distributed rates gave
poor results. FastTree was 1–5% more accurate than
QuickTree, an implementation of traditional Neighbor-
Joining (Howe et al. 2002), and 4–6% more accurate than
Clearcut, an implementation of relaxed Neighbor-Joining
(Evans et al. 2006). Clearcut is more scalable than the other
distance matrix methods but not as scalable as FastTree
(see below).

We obtained similar results with a standard set of
simulations of ungapped nucleotide alignments (Desper
and Gascuel 2002) or with ungapped protein simulations
(supplementary tables 1 and 2; Supplementary Material
online). Furthermore, FastTree was more accurate than
BIONJ regardless of how strongly the tree deviated from
the molecular clock or how divergent the sequences were
(supplementary fig. 1; Supplementary Material online).

These simulations also confirm that topologies can be
inferred even when there are many more sequences than
sites (Bininda-Emonds et al. 2001). The alignments with
5,000 sequences contained just 197–384 sites, yet FastTree
identified 76.3% of the splits correctly.

Effectiveness of FastTree’s Approximations and
Heuristics

The simulations also let us test the internals of Fast-
Tree. First, FastTree’s Neighbor-Joining phase should give
roughly the same results as BIONJ with uncorrected dis-
tances. In practice, the two methods had very similar accu-
racies, as did FastTree’s Neighbor-Joining with exhaustive
search (table 2). Thus, FastTree’s accuracy was not affected
by its approximations to handle gaps or by its heuristics
to reduce the number of joins considered. Heuristic search
was also over 100 times faster: for an alignment of 1,250
proteins with 338 positions, the Neighbor-Joining phase of
FastTree took 1,551 s with exhaustive search but only 8 s
with heuristic search.

Second, using uncorrected distances only reduced the
accuracy of BIONJ by around 3% (table 2). This is con-
sistent with a previous simulation study of realistic topolo-
gies and protein alignments (Hollich et al. 2005). Because
using uncorrected distances leads to relatively few errors,
FastTree can correct these errors by doing a few rounds of
NNIs. Adding more rounds of NNIs did not increase accu-
racy (table 2).

Table 3
The Relative Log Likelihoods of Topologies Inferred for
310 Genuine Protein Alignments of 500 Sequences Each

Distances/ Average Lower likelihood
Method model log likelihood than FastTree (%)

PhyML/FastTreea JTT + Γ b
4 440.7 0

FastTree Log-corrected 0.0 —
FastME Log-corrected −165.2 86
BIONJ JTT −404.3 95
BIONJ Log-corrected −426.1 >99
QuickTree Log-corrected −495.3 >99
Clearcut Log-corrected −532.2 99
QuickTree %Different −667.0 100
BIONJ JTT + Γ −1,576.1 99

a PhyML 3 with FastTree as the starting tree.
b Γ4 means four categories of sites with gamma-distributed rates.

Quality of Trees for Genuine Alignments

To test the quality of FastTree’s results on genuine
protein families, we inferred topologies for alignments of
500 randomly selected sequences from large COGs. These
alignments ranged from 65 to 1,009 positions, and within
each alignment, the average pair of sequences was 27%
identical. To quantify the quality of each topology, we used
PhyML to optimize the branch lengths and compute the
log likelihood. We ran PhyML with the Jones, Taylor, and
Thorton (JTT) model of amino acid substitution and four
categories of gamma-distributed rates.

In table 3, we report the average difference in log like-
lihood between that method’s trees and FastTree’s trees.
The methods are sorted by the average difference. All the
distance matrix methods gave significantly worse average
likelihoods than FastTree (paired t-test, all P < 10−20).
Furthermore, as in the simulations, FastTree’s approxima-
tions and heuristics did not reduce the quality of the trees
(supplementary table 3; Supplementary Material online).
Overall, we found that for these genuine alignments, Fast-
Tree’s topologies were of high quality.

We also tested the quality of FastTree trees for sets
of 500 nonredundant sequences from a large 16S rRNA
alignment (DeSantis et al. 2006; http://greengenes.lbl.gov).
To quantify the quality of each topology, we used PhyML
with the Hasegawa–Kishino–Yano 85 model, which ac-
counts for the higher rate of transitions over transversions,
and four categories of gamma-distributed rates. FastTree
found topologies with higher likelihoods than most of the
distance matrix methods (table 4). FastME did outperform
FastTree slightly if given maximum likelihood distances
that account for the higher rate of transitions than transver-
sions. Distinguishing transitions from transversions might
further improve FastTree’s topologies.

CPU Time and Memory Required to Infer Trees

We tested FastTree and other methods on a protein
alignment from the COG database (COG2814), a domain
alignment from PFam (PF00005), and a trimmed align-
ment of full-length 16S rRNAs (Tatusov et al. 2001; Finn
et al. 2006; http://greengenes.lbl.gov). These alignments
contain roughly 8,000–150,000 distinct sequences (table 5).
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Table 4
The Relative Log Likelihoods of Topologies Inferred for 100
Genuine 16S rRNA Alignments of 500 Sequences Each

Distances/ Average Lower likelihood
Method model log likelihood than FastTree (%)

PhyML HKY85 + Γ4 510.4 0
PhyML HKY85 358.4 5
FastME F84 + Γ 59.9 34
FastTree Jukes–Cantor 0.0 —
FastME Kimura −7.4 53
FastME Jukes–Cantor −71.7 70
BIONJ F84 + Γ −749.1 100
BIONJ Kimura −781.0 100
BIONJ Jukes–Cantor −843.9 100
QuickTree F84 + Γ −878.8 100
Clearcut F84 + Γ −905.1 100
QuickTree Jukes–Cantor −941.1 100
Clearcut Jukes–Cantor −982.3 100

NOTE.—HKY, Hasegawa–Kishino–Yano.

Running the distance matrix methods on the larger align-
ments was not feasible, so we extrapolated from smaller
alignments (see Materials and Methods). The actual or es-
timated CPU time and memory usage are shown in table 6.

The maximum likelihood methods we tested,
PhyML 3 (Guindon and Gascuel 2003) and RAxML VI
(Stamatakis 2006), did not complete in 50 days on the
smallest of these problems, which took FastTree about
3 min. (Despite the high usage of virtual memory by
PhyML, both PhyML and RAxML ran at over 99%
CPU utilization.) Even for COG alignments of just 1,250
proteins, PhyML 3 typically took over a week. Thus,
current maximum likelihood methods do not scale.

Most of the methods require a distance matrix as in-
put, so in practice, the running time is the time to compute
a distance matrix plus the time to infer a tree. As shown in
table 6, FastTree is over 1,000 times faster than computing
maximum likelihood protein distances. For the 16S rRNA
alignment, FastTree is as fast as computing Jukes–Cantor
distances and over 100 times faster than computing maxi-
mum likelihood distances with gamma-distributed rates.

For the 16S alignment, the only method other than
FastTree that seems practical is Clearcut: all the other
methods would require over 1,000 h or over 500 GB of
memory. Clearcut itself is very fast—we estimate that it
might take only 12 h to infer a tree from the 16S dis-
tance matrix. However, Clearcut requires a distance ma-
trix, and FastTree is faster than Clearcut once the cost of
computing the distance matrix is included. Clearcut would
also require over 50 GB of memory—20 times as much as
FastTree—which makes it impractical for us to run. Fur-
thermore, Clearcut seems to be less accurate than FastTree
(tables 1, 3, and 4).

Effectiveness and Speed of the Local Bootstrap

To test whether FastTree’s local bootstrap can iden-
tify which splits are reliable, we used the protein simula-
tions with 250 sequences. We also computed the traditional
bootstrap: we used PHYLIP’s seqboot to generate resam-
pled alignments, we ran FastTree on each resample, and
we counted how often each split in the original tree was

Table 5
Genuine Alignments for Performance Testing

Alignment COG2814 PF00005 16S rRNA

Type Protein Protein Nucleotide
#Sequences 10,610 52,927 167,547
#Distinct 8,362 39,092 158,022
#Columns 394 214 1,287
%Gaps 10.8 15.2 4.3

present in the resampled trees. For both methods, we used
1,000 resamples. As shown in figure 2, both methods were
effective in identifying correct splits. If we define “strongly
supported” as a local bootstrap of �95%, then 65% of the
correct splits were strongly supported. Conversely, 97% of
the strongly supported splits were correct.

To quantify how effective the measures were in distin-
guishing correct splits, we used the area under the receiver
operating characteristic curve (AOC; DeLong and Clarke-
Pearson 1998). The AOC is the probability that a true split
will have a higher support value than an incorrect split, so a
perfect predictor has AOC = 1 and a random predictor has
AOC = 1/2. The traditional bootstrap had an AOC of 0.933
versus 0.875 for the local bootstrap. Overall, the local boot-
strap is not quite as sensitive as the traditional bootstrap,
but it is a strong indicator of which splits are correct.

The local bootstrap was far faster than the traditional
bootstrap and required far less memory. The traditional
bootstrap takes 100 times longer than tree inference plus
the time to compare the trees to each other. For the 16S
rRNA alignment, performing the tree comparisons with
PHYLIP’s consense would take months and would require
over 90 GB of memory (table 6). In contrast, FastTree com-
puted the local bootstrap in an hour and 2.4 GB.

Discussion
Large Alignments

We have relied on profile-based multiple sequence
alignment as the most practical method for large families.
However, profile-based alignment is believed to be less ac-
curate than progressive alignment. Thus, whenever pos-
sible, biological inferences from these large trees should
be confirmed with smaller, higher quality alignments. This
also allows the use of slower but more accurate tree-
building methods and tests. For example, MicrobesOn-
line.org includes interactive tools for browsing large trees,
for selecting relevant sequences, and for building progres-
sive alignments and maximum likelihood trees with those
sequences.

Scaling to a Million Sequences

FastTree computes trees for the largest existing align-
ments, with on the order of 100,000 sequences, in under
a day. However, given the rapid rate of DNA sequencing,
we expect that alignments with 1,000,000 sequences will
soon exist. For such large alignments, the major memory
requirement will be the top-hits lists, which take O(N

√
N)

space. For 1 million sequences, this will be about 20 GB. In
contrast, the distance matrix for a million sequences would
take 2 TB of memory. FastTree’s running time should scale
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Table 6
CPU Time and Memory Usage for Computing Distances, Trees, and Support Values

COG2814 PF00005 16S rRNA

Program Support h GB h GB h GB

FastTree 1.0 None 0.06 0.16 0.52 0.3 16.3 2.4
FastTree 1.0 Local 1,000 0.08 0.16 0.56 0.3 17.3 2.4
Log-corrected distancesa 0.05 0.13 0.71 2.8 33.1 49.9
Maximum likelihood distancesb 138 0.72 ≈3,000 — ≈5,000 —
Clearcut 1.0.8c None 0.06 0.22 1.44 5.2 ≈28.6 ≈52
RapidNJ 1.0.0c None 0.05 2.2 ≈0.9 ≈55 ≈22.1 ≈549
FastME 1.1c None 0.51 4.2 ≈ 12.5 ≈105 ≈138 ≈1,000
QuickTree 1.1c None 0.24 0.16 22.7 2.9 ≈1,500 ≈47
QuickTree 1.1d Boot 100 63.5 0.71 ≈104 ≈15.5 ≈105 ≈254
BIONJc None 32.9 0.44 ≈820 ≈10.9 ≈105 ≈110
PhyML 3e Approximate >1,000 9.5 — — — —

likelihood ratio test
RAxML VI 1.0f None >1,000 0.70 — — — —
Consenseg Boot 100 1.09 0.36 118 9.4 ≈3,700 ≈94

NOTE.—aLRT, approximate likelihood ratio test.
a The time to compute the distances between all N2 pairs of sequences in the alignment, as implemented by the authors, and the space required to store the N(N−1)/2

distinct entries of the distance matrix. For nucleotide sequences, these are the same as Jukes–Cantor distances.
b For protein sequences, we used PHYLIP’s protdist and default options (JTT model, no variation of rates across sites). For nucleotide sequences, we used PHYLIP’s

dnadist with the F84 model and gamma-distributed rates.
c These timings include half of the time to compute N2 log-corrected distances because the method requires a distance matrix but each pair of sequences only needs to

be considered once.
d Using QuickTree’s built-in implementation of %different distances and of global bootstrap.
e For best performance, we used no variation of rates across sites.
f For best performance, we used no variation of rates across sites and the fast hill-climbing option (-f d.). For an initial topology, we used the BIONJ tree.
g This does not include the time to compute the resampled trees.

by between O(N logN
√

N) and O(N2), so inferring a tree
for a million rRNA sequences should take 2–4 weeks. Tun-
ing the top-hits heuristic might reduce this time.

Conclusions

FastTree makes it practical to infer accurate phyloge-
nies, including support values, for families with tens or
hundreds of thousands of sequences. These phylogenies
should be useful for reconstructing the tree of life and
for predicting functions for the millions of uncharacter-
ized proteins that are being identified by large-scale DNA
sequencing. FastTree executables and source code are
available at http://www.microbesonline.org/fasttree; Fast-
Tree trees for every prokaryotic gene family are avail-
able in the MicrobesOnline tree-browser (http://www.
microbesonline.org/); and a FastTree tree for all sequenced

FIG. 2.—Distribution of support values for simulated alignments of
250 protein sequences with gaps. We compare the distribution of Fast-
Tree’s local bootstrap and the traditional (global) bootstrap for correctly
and incorrectly inferred splits. The right-most bin contains the strongly
supported splits (0.95–1.0).

full-length 16S rRNAs is available from the FastTree Web
site and will be included in the next release of greengenes
(http://greengenes.lbl.gov).

Note

While this paper was under review, we imple-
mented tree-comparison in O(N) space and approxi-
mately O(N) time(http://www.microbesonline.org/fasttree/
treecmp.html). This makes it possible to use the traditional
bootstrap with tens of thousands of sequences.

Supplementary Material

Supplementary notes 1 and 2, Tables 1–3 and figure 1
are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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