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In the past, 2 kinds of Markov models have been considered to describe protein sequence evolution. Codon-level models
have been mechanistic with a small number of parameters designed to take into account features, such as transition–
transversion bias, codon frequency bias, and synonymous–nonsynonymous amino acid substitution bias. Amino acid
models have been empirical, attempting to summarize the replacement patterns observed in large quantities of data and
not explicitly considering the distinct factors that shape protein evolution. We have estimated the first empirical codon
model (ECM). Previous codon models assume that protein evolution proceeds only by successive single nucleotide
substitutions, but our results indicate that model accuracy is significantly improved by incorporating instantaneous
doublet and triplet changes. We also find that the affiliations between codons, the amino acid each encodes and the
physicochemical properties of the amino acids are main factors driving the process of codon evolution. Neither multiple
nucleotide changes nor the strong influence of the genetic code nor amino acids’ physicochemical properties form a part
of standard mechanistic models and their views of how codon evolution proceeds. We have implemented the ECM for
likelihood-based phylogenetic analysis, and an assessment of its ability to describe protein evolution shows that it
consistently outperforms comparable mechanistic codon models. We point out the biological interpretation of our ECM
and possible consequences for studies of selection.

Introduction

Protein sequence evolution has been investigated on
2 data levels: amino acids and triplets of cDNA interpreted
as codons. Amino acid sequences are popular because they
evolve more slowly than DNA and are easier to align,
and they are less prone to ‘‘saturation’’ effects that some
phylogenetic inference methods handle poorly and because
amino acid residue frequency biases are often less marked
than DNA nucleotide frequency biases. However, DNA se-
quences contain more information, and studying protein
evolution by modeling the evolutionary process on coding
DNA is appealing because it allows us to take the genetic
code into account.

There are 20 amino acids but 64 possible codons.
Three amino acids—arginine, leucine and serine—are each
encoded by 6 different codons, whereas another 5 can each
be produced by 4 codons, which only differ in the third po-
sition. A further 9 amino acids are specified by a pair of
codons which differ by a transition substitution at the third
position, whereas isoleucine is produced by 3 different co-
dons and methionine and tryptophan by only a single co-
don. Codon-level models are able to make distinctions
between codons, which encode the same amino acid and
those that do not. They also allow the study of whether there
is a tendency for mutations maintaining the encoded amino
acid (synonymous changes) to be accepted by selection
less, equally, or more frequently than those that alter the
amino acid (nonsynonymous changes). Thus, by introduc-
ing parameters describing the ratio of nonsynonymous to
synonymous changes, it is possible to measure the effect
of natural selection on the sequence.

Phylogenetic analyses using codon models have there-
fore become very popular, permitting in silico study of se-

lective forces acting upon a protein that can be highly
informative about its biological function and evolutionary
history (Yang and Bielawski 2000). The interactions of pro-
teins through their regulatory and metabolic networks are
also reflected in the selection acting upon them: for exam-
ple, it has been demonstrated that the more interactions
a protein has with other molecules, the slower it evolves
and that proteins operating in complexes (e.g., involved
in translation or DNA repair) are, on average, more con-
strained than those with simple housekeeping functions
(Aris-Brosou 2005).

Existing models that describe protein evolution at the
amino acid and codon levels use Markov processes (Liò and
Goldman 1998) and can be distinguished into 2 types.
Empirical models do not explicitly consider biological factors
that shape protein evolution but simply attempt to summa-
rize the substitution patterns observed in large quantities of
data. Typically used for amino acid level modeling, they
describe substitution patterns by parameters representing
the relative rates of replacements between amino acids;
these parameters are an aggregated measure of all kinds
of physicochemical properties of the amino acids and of
their interaction with their local environment. Often empir-
ical models have many such parameters, and these are typ-
ically estimated once from a large data set and subsequently
reused with the assumption that they are applicable to a wide
range of sequence data sets.

On the other hand, mechanistic models explicitly take
into account features of the process of protein evolution
such as selective pressures and the frequency of character
states in the data (e.g., relative occurrence of different co-
dons), allowing the testing of hypotheses related to these
factors for each data set of interest. Typically, only a rela-
tively small number of parameters is used; their values are
not assumed to be widely applicable ‘‘constants’’ but are
estimated afresh for each data set.

At the amino acid level, there is a long tradition of em-
pirical amino acid models. Dayhoff et al. (Dayhoff and Eck
1968; Dayhoff et al. 1972, 1978) estimated the first amino
acid models, resulting in the widely used point accepted
mutations (PAM) matrices (see also Kosiol and Goldman
2005). Jones et al. (1992) employed much the same
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methods but based the estimation of the Jones-Taylor-
Thornton (JTT) model on a larger sequence database; Whelan
and Goldman (2001) used a maximum likelihood (ML)
estimation technique to generate the Whelan and Goldman
(WAG) model. The PAM, JTT, and WAG models give in-
creasingly good descriptions of the ‘‘average’’ patterns and
processes of evolution of large collections of sequences.
Such average models can fail to describe proteins with par-
ticular functions and structures, however, and in various
cases improved empirical amino acid models have been de-
rived by estimating them from data sets representing par-
ticular functional and structural properties of the proteins
(e.g., transmembrane proteins [Jones et al. 1994], different
protein secondary structure contexts [Goldman et al. 1998],
mitochondrially encoded proteins [Adachi and Hasegawa
1996], chloroplast-derived proteins [Adachi et al. 2000],
and retroviral polymerase proteins [Dimmic et al. 2002]).

Purely mechanistic amino acid models are rare; they
came much later than empirical amino acid models and
were introduced to try to explain observed amino acid sub-
stitution patterns. Koshi et al. (1997) developed a mechanis-
tic amino acid model, which incorporates the ‘‘fitness’’ of
each of the amino acids, defined as a function of physico-
chemical properties of that amino acid. Their model, based
on Boltzmann statistics and Metropolis kinetics (Metropolis
et al. 1953), uses far fewer than the theoretical maximum of
380 adjustable parameters for a Markov process amino acid
model, such that it is possible to optimize the model for
each specific data set of protein sequences studied. Yang
et al. (1998) reduced the mechanistic codon model M0
(see below) to a mechanistic amino acid model, enforcing
the Markov property and reversibility. This ‘‘collapsed-
codon’’ amino acid model performed significantly better
when it also incorporated mechanistic parameters describ-
ing physicochemical properties.

Empirical amino acid models have also been com-
bined with additional mechanistic parameters highly suc-
cessfully. The ‘‘þF’’ method of Cao et al. (1994) allows
the incorporation of the amino acid frequencies from a spe-
cific data set under study in place of those of the database
from which the substitution matrix was estimated, and is
now very widely used in phylogenetics. The inclusion of
a C-distribution (Yang 1994b) containing a single biolog-
ically interpretable shape parameter that can accommodate
varying degrees of heterogeneity of evolutionary rate
among the sites of a protein has also been proven to im-
prove the description of sequence evolution for many pro-
teins (Goldman and Whelan 2002).

Codon models, on the other hand, are traditionally
mechanistic, characterizing a Markov process using only
a small number of parameters representing biologically rel-
evant factors such as bias toward transition mutations, var-
iability in codon frequencies, and, importantly, the
tendency of mutations maintaining the encoded amino acid
(synonymous changes) to be accepted by selection with
a different probability from those changes that change
the amino acid (nonsynonymous changes). A single param-
eter x, the synonymous–nonsynonymous amino acid sub-
stitution rate ratio, is widely used to detect selection in
proteins (Goldman and Yang 1994; Nielsen and Yang
1998; Yang and Bielawski 2000; Yang et al. 2000). Ad-

vanced codon models do not assume a single fixed x
but permit consideration of different x values over sites
(Yang et al. 2000; Wong et al. 2004; Massingham and
Goldman 2005), lineages (Yang and Nielsen 1998), or both
sites and lineages (Yang and Nielsen 2002). These models
are popular for detecting proteins and individual sites in
proteins undergoing positive selection (Nielsen and Yang
1998; Yang et al. 2000; Wong et al. 2004; Massingham
and Goldman 2005).

All the codon models in common use make the as-
sumption that every mutation alters just 1 nucleotide.
Evolutionary change between codons varying in 2 or 3
nt are therefore necessarily interpreted as having arisen
via a succession of single nucleotide changes. In contrast,
Whelan and Goldman (2004) introduced a model including
the same evolutionary factors as the standard mechanistic
codon models but in addition allowing for instantaneous
single, double, and triple nucleotide changes. Their results
suggested that protein sequence evolution was better de-
scribed by models that include significant proportions of
double and triple changes. If this is correct, there could
be important consequences for the application of codon
models to detect selection—we address the question of in-
stantaneous multiple nucleotide substitutions in detail in
this paper.

The success of purely empirical models and combined
mechanistic and empirical models on the amino acid level,
for example, in database searches, alignment, and phyloge-
netic studies, suggests that empirical codon models (ECMs)
could potentially be very useful for both understanding pro-
tein evolution and in phylogenetic applications. There has,
however, been very little work in this area. ECMs are harder
to estimate—they have a high number of parameters be-
cause they work on a 64 letter alphabet (61 if stop codons
are discarded)—and application of methods analogous to
those used to derive empirical amino acid models requires
large amounts of protein-coding DNA sequence data not
previously available in a convenient form. We know of only
1 example, by Schneider et al. (2005), in which a log-
odds matrix is derived from codon sequences separated
by a small evolutionary distance (time) and applied in an
alignment program. However, although codon matrix of
Schneider et al. is a step in the direction of an empirical
model of codon sequence evolution, they only describe
probabilities and log-odds values for codon substitutions
for a particular set of evolutionary distances.

In this paper, we estimate an ECM from a large data-
base of protein-coding DNA sequences. We then incorpo-
rate it in ML phylogenetic inference software to see if it
gives a good description of protein evolution and may
be generally useful for the phylogenetic analysis of partic-
ular proteins. We have implemented the ECM in combina-
tion with various mechanistic parameters, and our
assessment of its utility for ML phylogenetics shows that
it performs better than comparable existing models.

Materials and Methods
Standard Markov Models for Codon Sequence Evolution

Markov models of codon substitution were first pro-
posed by Goldman and Yang (1994) and Muse and Gaut
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(1994). We introduce these models by reference to the sim-
ple mechanistic model called M0 by Yang et al. (2000) (see
also Goldman and Yang 1994). This model specifies the
relative instantaneous substitution rate from codon i to co-
don j as:

qij5f 0 if i or j is a stop codon or

i/j requires. 1 nt substitution;

pj if i/j is a synonymous transversion;

pjj if i/j is a synonymous transition;

pjxM if i/j is a nonsynonymous transversion;

pjjxM if i/j is a nonsynonymous transition:

ð1Þ

for all i 6¼ j, where parameter xM represents the
nonsynonymous–synonymous rate ratio (the subscript M
denoting the mechanistic M0 model), j the transition–
transversion rate ratio, and pj the equilibrium frequency of
codon j. Different assumptions can be made concerning pj
(Goldman and Yang 1994; Muse and Gaut 1994; Yang
1997). Here, we mostly consider the pj as 61 parameters,
independent apart from the constraint that their sum is 1
(i.e., the F61 parameterization; Yang 1997). In common
with all Markov models of sequence evolution, absolute
rates are found by normalizing the relative rates to a mean
rate of 1 at equilibrium, that is, by enforcingP

i

P
j 6¼i piqij51 and completing the instantaneous rate

matrix Q5 (qij) by defining qii5�
P

j 6¼i qij to give a form
in which the transition probability matrix is calculated as
P(t) 5 eQt (Liò and Goldman 1998). Evolutionary times t
are measured in expected numbers of nucleotide sub-
stitutions per codon.

Codon-level Markov models are typically used for ML
phylogenetic inference. The model defines the likelihood
for hypotheses consisting of values for all model para-
meters, a phylogenetic tree and its branch lengths (see,
e.g., Felsenstein 1981; Goldman and Yang 1994; Liò and
Goldman 1998; Felsenstein 2004), and this likelihood is
then maximized over all hypotheses (parameter values) of in-
terest. Codon models are increasingly used for estimating
phylogenetic relationships, that is, the likelihood is maxi-
mized over tree shapes (Ren et al. 2005); otherwise, a good
tree topology found by other means may be taken as known.

Models describing evolution at the codon level allow
the estimation of measures of the selective forces acting on
proteins. The ML estimate of the parameter describing the
ratio of rates between nonsynonymous and synonymous
substitutions, xM, is widely used as a direct measure of
these forces. When there are few selective pressures acting,
sequences are said to be evolving neutrally and the relative
rates of fixation of synonymous and nonsynonymous mu-
tations are roughly equal (xM is approx. 1). When a se-
quence has an important function, its sequence is highly
conserved through evolution and xM takes a value substan-
tially less than 1. Conversely, when sequences are under
pressure to adapt quickly to their environment, nonsynon-
ymous changes are strongly selected for and xM will take
a value greater than 1.

The most advanced codon models do not assume a sin-
gle fixed xM for all sites, but permit consideration of a dis-
tribution of values over sites. Yang et al. (2000) proposed

and investigated a series of such models designated M0–
M13 (the M-series). M7 is widely used, and describes
among-site variation in xM with a b-distribution, allowing
for purifying selection and neutral evolution only (0 � xM

� 1). Other models allow also for positive selection at some
sites; for example, M8 contains the b-distribution of M7
and a single additional category of sites with xM permitted
to be greater than 1. In this paper, implementations of our
ECM do not attain this level of complexity, and we will
concentrate on comparisons with M0 and M7 as defined
in Yang et al. (2000).

Estimation of Empirical Models

Following Whelan and Goldman (2001), we use a ML
approach to infer an empirical model from a data set of
many multiple sequence alignments. We retain the mathe-
matical and computational convenience that empirical mod-
els are often assumed to be reversible (Tavaré 1986; Yang
1994a; Felsenstein 2004). Under this assumption, instanta-
neous rates qij can be parameterized as

qij5pjsij for all i 6¼ j; ð2Þ

where the sij, often denoted exchangeabilities (Whelan and
Goldman 2001), are symmetric (sij 5 sji) and pj describes
the equilibrium frequencies. For amino acid models, the
instantaneous rate matrix can therefore be described by
208 independent terms, namely 189 exchangeabilities sij
and 19 frequency parameters pj. In general, the number of
independent parameters for a reversible substitution model
with N character states can be calculated as�

N2 � N

2
� 1

�
þ ½N � 1�5NðN þ 1Þ

2
� 2; ð3Þ

where the 1st term in square brackets represents the
exchangeabilities and the 2nd represents the state frequen-
cies. Thus, to estimate a reversible ECM (N 5 61), 1,889
independent parameters have to be determined.

Whelan and Goldman (2001) developed an approxi-
mate likelihood method that is based on the observation that
the inference of parameters describing the evolutionary pro-
cess remains stable across near-optimal tree topologies.
This means that, so long as tree topologies and their branch
lengths are close enough to optimal when estimating a new
model, any minor inaccuracies will not influence the param-
eter estimates to any great extent (see also Sullivan et al.
1996; Abdo et al. 2005; Sullivan et al. 2005). Relying
on this approximation, empirical model estimation pro-
ceeds by taking a large data set of many sequence align-
ments, each with an associated phylogenetic tree, and
computing the likelihood of all these data as a function
of the parameters sij and pj. This likelihood is then maxi-
mized over the sij and pj, taking the trees (topologies and
branch lengths) as fixed.

In theory, it would be possible instead to fix only the
relative branch lengths on a per-alignment basis, to reesti-
mate all branch lengths, or even to reestimate all tree topol-
ogies and branch lengths during the estimation of the codon
model. However, in practice this slows down the estimation
considerably and experience from the estimation of WAG
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(Whelan and Goldman 2001) shows it had little effect.
Likewise, it would be possible to estimate a different set
of the codon frequencies for every protein family. This
would require another 60 parameters per protein family
used. Again, we expect from the results of Whelan and
Goldman (2001) that this would not improve the fit of
the empirical model significantly.

The ML estimates, after normalization so the inferred
Markov process has mean rate 1 at equilibrium, are denoted
s�ij and p�j : We will refer to this model as ECM. Notice that
in the context of codon models, we need to make no as-
sumption that only single nucleotide changes occur. If re-
quired, this can be enforced by requiring s�ij50 whenever
codons i and j differ at more than 1 position.

Even using the approximation of Whelan and Goldman,
an ML estimation of an ECM has previously seemed infea-
sible because of the computational burden of estimating
1,889 parameters and the lack of a suitable data set. The in-
troduction of an expectation-maximization algorithm to ML
training of substitution rate matrices by Holmes and Rubin
(2002) has greatly speeded up the computations, now mak-
ing it feasible to estimate an ECM from a database of multiple
alignments and phylogenetic trees. Klosterman et al. (2006)
provide a C++ implementation of this algorithm, XRATE,
as part of the DART package. Robustness tests have con-
firmed the suitability of DART for the estimation of an
ECM (Klosterman et al. 2006).

The Pandit Database

The large number of sequence alignments and phylog-
enies needed to estimate an ECM reliably were taken from
the Pandit database of aligned protein domains (Whelan
et al. 2003, 2006). Each family in Pandit includes an align-
ment of amino acid sequences and the corresponding align-
ment of the DNA sequences encoding the protein, and each
alignment has an estimated phylogenetic tree associated
with it (for full details, see Whelan et al. 2006).

For the estimation of an ECM only the DNA align-
ments and their inferred trees were utilized. Because the
Pandit alignments vary in the quality of their reconstruction
of homology, both within and between alignments, the pro-
file hidden Markov model described by Whelan et al.
(2006) was used to classify the columns in each alignment
as being ‘‘reliable’’ or otherwise. All matrices were esti-
mated using only reliable alignment columns. Further data
cleaning (e.g., discarding additional codons neighboring
gap regions, removing very short alignment fragments)
did not noticeably change the substitution patterns of the
ECMs estimated. After removing all families that could
not be confidently classified as using the universal genetic
code or that included any sequences with internal stop co-
dons, we were left with 7,332 protein families from Pandit.
These were used to estimate the ECM.

Pandit contains only trees based on DNA or amino
acid data and not on codon data. We assumed that the
DNA tree topologies were near optimal for codon-level
analysis and that the branch lengths differ by just 1 scal-
ing factor common to all alignments. This scaling factor
is expected to be around 3 because there are 3 nt in a codon,
and the branch lengths in the DNA trees are measured in

expected number of substitutions per nucleotide site. How-
ever, the exact value of the scaling factor is irrelevant be-
cause the resulting instantaneous rate matrix is anyway
normalized to mean rate 1.

For a more detailed analysis of the performance of the
estimated ECM in phylogenetic analysis, a subset of 200
protein-coding DNA alignments and tree topologies was
selected (see Supplementary Material online, http://www.
ebi.ac.uk/goldman/ECM/ for details).

Statistical Comparison of Competing Models

We use likelihood ratio tests (LRTs) and the Akaike
information criterion (AIC) to make statistical comparisons
between competing codon models of protein evolution.
Simply preferring the model with the highest likelihood
may lead to the selection of 1 that is unnecessarily com-
plex. For example, a more general model will always have
a higher likelihood than a more restricted model nested
within it. Statistical methods are required to balance model
complexity against useful improvements in likelihood.

The LRT offers a very powerful way of compar-
ing models (Silvey 1970), widely used in phylogenetics
(Goldman 1993; Felsenstein 2004). It requires the forma-
tion of 2 competing hypotheses, H0 and H1, represented
by models with different parameter constraints. The ML
values ðL̂Þ for the competing hypotheses are compared
using the LRT statistic

2D52ln

�
L̂1

L̂0

�
52ðlnðL̂1Þ � lnðL̂0ÞÞ: ð4Þ

This statistic has very useful properties for significance
testing (Silvey 1970). In straightforward cases, when H0

can be formed by placing restrictions on the parameters in
H1, the hypotheses are said to be nested and for
significance testing 2D can be compared (e.g.,) with the
95% point of a v2

n distribution (Felsenstein 2004), where n
is the number of free parameters by which H0 and H1 differ
(for more complex cases see Goldman 1993; Whelan and
Goldman 1999; Goldman and Whelan 2000).

The AIC is an alternative method that reaches a compro-
misebetweengoodnessoffit and thecomplexityofmodels. It
isparticularlyvaluablewhencomparingmultiplemodelsand
models that are not nested (Felsenstein 2004). The AIC for
a hypothesis (in our application, a model) is computed by
taking �2 times the maximum log-likelihood of the hypoth-
esis and penalizing it by adding twice the number of free
parameters. So, for hypothesis i with pi free parameters,

AICi5� 2lnL̂i þ 2pi: ð5Þ

Values of AICi are compared among hypotheses i with the
model that has the lowest value of AIC preferred.

Application of the ECM

ECM could simply be used in the same way that the
original Dayhoff, JTT, or WAG models (see above) can be
used for amino acid sequences. However, for amino acid
sequence evolution, past experience shows that the perfor-
mance of empirical models can be significantly improved
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by combining them with mechanistic parameters. Existing
mechanistic codon models are based on parameters describ-
ing codon frequencies pi, transition–transversion bias j,
and nonsynonmous–synonymous bias x. Additionally,
we have seen in another study on whole-proteome data sets
that codon substitution patterns vary strongly for sequences
with different x values (Kosil 2006). All this suggests that
it will be beneficial to consider reintroducing mechanistic
parameters pi, j, and x.

Analogous to the definition of the mechanistic codon
model M0 (eq. 1), we define the instantaneous rate matrix of
the ECM with mechanistic parameters as

qij5

8><
>:

0 if i or j is a stop codon

s�ijpjjði; jÞ if i/j is a synonymous change

s�ijpjjði; jÞx if i/j is a nonsynonymous change:

ð6Þ

where s�ij are the ECM exchangeabilities estimated from
the Pandit database, pj is the frequency of codon j esti-
mated from each particular data set analyzed, j(i, j) is a
term representing transition–transversion bias between co-
dons i and j (see below), and x represents nonsynonymous–
synonymous bias. The instantaneous rate matrix Q 5 (qij)
is again completed by defining qii5�

P
j 6¼i qij and nor-

malizing to mean rate 1. Note the use of the þF method
(Cao et al. 1994) of replacing the database-wide codon
frequency estimates p�j by a set of estimates pj derived
from each particular alignment studied (F61 model [Yang
1997]). We will denote the combined empirical and mech-
anistic model as ECMþFþxþnj, where different values
of n will allow us to distinguish between model variants
incorporating transition–transversion bias j in different
ways. There is no theoretical reason why the ex-
changeabilities s�ij should remain fixed while we reestimate
the pj for each family. However, in an alignment of 1 pro-
tein family, we often do not observe enough substitutions
to infer the sij for each of the changes between codons i
and j. In contrast, the reestimation of pj is widely and suc-
cessfully used in practice for nucleotide, amino acid, and
codon models (see, e.g., Felsenstein 1981; Cao et al. 1994;
Goldman and Yang 1994; Goldman and Whelan 2002).
Note also that there is no requirement inherent in equation
(6) that i and j differ at exactly 1 nucleotide position, as is
required in the definition of the standard model M0 (eq. 1)
and that evolutionary time is now measured in substitution
events per codon.

In an ECM, the parameter x can no longer be simply
interpreted as a rate ratio. An ECM already reflects the av-
erage nonsynonymous–synonymous bias present in the
proteins composing the database it was estimated from. Es-
timates obtained from mechanistic codon models, xM, and
estimates from ECMs, x, therefore cannot be compared di-
rectly: xM represents the absolute nonsynonymous–synon-
ymous rate ratio, whereas x measures the relative strength
of selection with respect to an average level implicit in the
Pandit database. To make a valid comparison, we need to
disentangle estimated values of x from the expected value
under neutral evolution.

To do this, we take an approach that was pursued in the
early mechanistic codon model of Goldman and Yang
(1994). There, the ratio of the instantaneous rates per codon

of nonsynonymous and synonymous nucleotide substitu-
tions is calculated as qa/qs, where the nonsynonymous sub-
stitution rate is given by

qa5
X
i

X
j 6¼i

aaj 6¼aai

piqij ð7Þ

(aai indicates the amino acid encoded by codon i), and
the synonymous rate per codon can be calculated as qs 5
1 – qa because the overall rate is normalized to 1. We also
take the values qneutral

a 50:79 and qneutral
s 50:21, derived by

Nei and Gojobori (1986) as typical values for neutrally
evolving proteins. Thus the ‘‘corrected’’ nonsynonymous–
synonymous rate ratio xE is given by

xE5
qaq

neutral
s

qsqneutral
a

ð8Þ

and can be directly compared with estimates xM from
mechanistic models. Note that xE depends on x through qs
and qa, themselves functions of the qij (eq. 7) which
depend on x (eq. 6).

Similarly, our expression j(i, j) in equation (6) repre-
sents a measure of the relative strength of the transition–
transversion bias with respect to the average level implicit
in the Pandit database. Whereas the transition–tranversion
bias is traditionally modeled by a single parameter, permit-
ting double and triple nucleotide changes in the ECM leads
to new scenarios in addition to the single transitions or sin-
gle transversions inherent in single nucleotide changes. The
9 possible ways to combine transitions (ts) and transver-
sions (tv) in multiple nucleotide changes within 1 codon
are as follows:

1 nucleotide change : ð1ts; 0tvÞ; ð0ts; 1tvÞ; ð9Þ

2 nucleotide changes : ð2ts; 0tvÞ; ð1ts; 1tvÞ; ð0ts; 2tvÞ; ð10Þ

3 nucleotide changes :ð3ts; 0tvÞ; ð2ts; 1tvÞ; ð1ts; 2tvÞ;
ð0ts; 3tvÞ: ð11Þ

As a consequence, transition–transversion bias may now
be modeled as a function j(i, j) that depends on the
numbers of transitions (nts) and transversions (ntv) of the
change from codon i to codon j.

Here, we describe the 6 formulations for j(i, j) that
are most interesting or successful out of a larger set of re-
lationships devised and studied without preassumptions
about what might best fit real sequence data (see Supple-
mentary Material online, http://www.ebi.ac.uk/goldman/
ECM/).

� ECMþFþx: The factor j is set to 1 for all changes:

jði; jÞ51

This model assumes that transition–transversion
bias is fully accounted for by the Pandit exchangeabilities
s�ij and does not vary significantly from one protein to
another.
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� ECMþFþxþ1j(ts) and ECMþFþxþ1j(tv):

� ECMþFþxþ1j(ts) is similar to existing mechanistic
codon models and considers that the biasing effect
introduced by multiple transitions may be multiplicative:

jði; jÞ5jnts :

In standard mechanistic codon models nts is necessarily
0 or 1 and we expect j. 1. In our model, these constraints
disappear because multiple nucleotide changes are permit-
ted (nts 5 0, 1, 2, or 3) and j is a measure relative to the
value implicit in the s�ij:

� – ECMþFþxþ1j(tv) is similar to ECMþFþxþ1j(ts),
except that it focuses on transversions. This is unusual,
but perhaps more natural in the same way that the
standard x parameter is generally considered a ‘‘rate
reducing’’ effect:

jði; jÞ5jntv :

� ECMþFþxþ2j: In this model, transitions and trans-
versions are modeled with individual parameters
(j1 for transitions and j2 for transversions) and the
effect is seen as multiplicative in terms of the relative
rates:

jði; jÞ5jnts

1 jntv

2 :

� ECMþFþxþ9j: In this model, each of the 9 possible
cases (listed in eqs. 9–11 above) is modeled by an
individual rate-modifying parameter (j1 � j9). Note
that because of the overall rate normalization, this
model is equivalent to 1 with just 8 independent j
parameters.

Note that ECMþFþx is nested in all the other models.
The (ts) and (tv) variants of ECMþFþxþ1j are each
nested in ECMþFþxþ2j, and all 3 of these models are
nested in ECMþFþxþ9j.

The ECMs introduced in this section were incorpo-
rated into the program codeml from release 3.14b of
PAML, a software package for ML phylogenetic analysis
of DNA and protein sequences written and maintained by
Yang (1997). For each data set analyzed, free parameters of
the models (pj, x, and appropriate j parameters as de-
scribed above) were estimated by ML, as were branch
lengths of trees. Tree topologies from the Pandit database
were assumed correct.

Results and Discussion
Empirical Codon Models Estimated from Pandit

We estimated instantaneous rate matrices from the en-
tire collection of 7,332 protein families taken from Pandit as
described above. Figure 1 illustrates ECMs in the form of
‘‘bubble plots.’’ The areas of the bubbles represent the rates
of instantaneous change ðq�ij5p�j s

�
ijÞ; with the gray bubble in

the upper left corner showing the area representing an in-
stantaneous rate of 0.5. The rate matrices are not symmetric
because the codons have different frequencies. The codons

are listed to the left and top, and amino acid translations are
given on the bottom and right (see also Klosterman et al.
2006).

Figure 1A shows the instantaneous rate matrix permit-
ting all single, double, and triple nucleotide changes,
inferred as in Estimation of Empirical Models. For this ma-
trix, denoted ‘‘unrest’’ to indicate unrestricted optimization of
all exchangeability parameters, 1,889 parameters were esti-
mated. The ML obtained was ln Lunrest 5�9.157731 � 107.

DART also enabled us to restrict the estimated rate
matrix to single nucleotide changes only (i.e., enforcing
s�ij50 unless codons i and j differ by exactly 1 nucleotide).
Figure 1B shows the bubble plot of the optimal instanta-
neous rate matrix restricted (rest) in this way. For this ma-
trix, 322 parameters were estimated, and the ML obtained
was ln Lrest 5�9.343274 � 107. The matrices illustrated in
figure 1 are available in the Supplementary Material online
(http://www.ebi.ac.uk/goldman/ECM/).

There has been some debate about the existence and
level of multiple nucleotide changes (Averof et al. 2000;
Smith et al. 2003; Bazykin et al. 2004; Whelan and
Goldman 2004). Possible biological mechanisms for
changes in 2 neighboring nucleotides, for example, dipyr-
imidine lesions induced by ultraviolet light and template-
directed mutations during DNA repair and replication, have
been pointed out (Averof et al. 2000). However, their effect
on evolutionary substitution patterns is likely to be small.
Comparing figure 1A with 1B by eye, the existence of mul-
tiple nucleotide changes (blue and green bubbles) in the un-
restricted model is quite striking. The fact that
instantaneous rate matrices are normalized to mean rate
1 allows us to calculate the proportions of single, double,
and triple changes (qS, qD, and qT, respectively) in
a straightforward manner. Defining S, D, and T to be the
sets of codon pairs (i, j) differing by a single nucleotide
change, a double change and a triple change, respectively,
then we observe:

qS5
X
ði;jÞ2S

p�i q
�
ij50:753; qD5

X
ði;jÞ2D

p�i q
�
ij50:212;

qT5
X
ði;jÞ2T

p�i q
�
ij50:035:

In other words, we observe 75.3% single, 21.2% double,
and 3.5% triple changes.

We performed a LRT between the restricted and un-
restricted ECMs to see if the addition of double and triple
changes was statistically significant. Comparing the statis-
tic 2D 5 2(ln Lunrest � ln Lrest) 5 3.71 � 106 (eq. 4) with
a v2

1567 distribution, we see this is highly significant; the
P-value is too small to be calculated reliably. This means
that the codon substitution patterns in the Pandit data set are
overwhelmingly better explained by a model that allows for
multiple nucleotide changes to occur instantaneously,
rather than only via successive single changes.

We also estimated rate matrices restricted to single and
double, or single and triple, changes only. The ML calcu-
lated for an instantaneous rate matrix restricted to single and
double changes is ln L 5 – 9.167463 � 107 (75.3% single
and 24.7% double changes) and that for a matrix restricted
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to single and triple changes is ln L 5 – 9.195009 � 107

(88.3% single and 11.7% triple changes). Appropriate
LRTs indicate that the introduction of either double or triple
changes to the restricted model permitting single changes
only is a significant improvement, as is the subsequent ad-
dition of triple or double, as appropriate changes. In brief,
our statistical tests confirm that both double and triple
changes are making a significant contribution to the fit
of the ECM to the evolution of the proteins represented
in the Pandit data sets.

A further illustration of the importance of double and
triple nucleotide changes is given in figure 2. Here, we pres-
ent histograms of the magnitudes of the instantaneous rates
q�ij from the ECM for all double and triple nucleotide
changes i/j: These are compared with corresponding his-
tograms from a simulation study in which data conforming
to M0, that is, with no double or triple changes, were an-
alyzed using the same methods (see Supplementary
Material online for further details). Whereas DART was
able to recover M0 well (note that very few nonzero rates

FIG. 1A.—Bubble plots of ECMs for the Pandit data set. Codons are ordered according to Urbina et al. (2006).

1470 Kosiol et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/24/7/1464/986344 by guest on 24 April 2024



were estimated for double changes and virtually none for
triple changes), the majority of the double and triple nucle-
otide changes estimated from the Pandit data sets are well
above these estimation errors. This confirms that our meth-
odology and the DART software can accurately recover
zero rates when these do exist; therefore, we can trust
the small but nonzero rates observed for multiple nucleotide
changes in real data (e.g., in fig. 1A) to be genuine and not
an artifact.

Physicochemical Interpretation of ECM

Apart from the observation of the existence of multiple
nucleotide changes, it is quite difficult to extract biologi-

cally relevant information from all 61 � 61 matrix elements

at once. The almost invariant sets (AIS) algorithm (Kosiol

et al. 2004) is a method to summarize the information of

Markov substitution models by analyzing their instanta-

neous rate matrices. It is a grouping method that identifies

FIG. 1B. (Continued).
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disjoint sets with high rates of change between elements of
each set but small rates of change between elements of dif-
ferent sets. This gives a quantitative method of identifying
subsets of the states of models within which interchanges
occur readily but between which interchanges are relatively
uncommon. Table 1 shows the results of applying AIS to

the unrestricted ECM derived in ECM Estimated from
Pandit and, for comparative purposes, to the mechanistic
codon model M0 and the WAG amino acid model.

For the ECM, a natural grouping to consider is the di-
vision into 20 subsets. This perfectly separates the 61 co-
dons according to the amino acids they encode, that is, in

Table 1
Application of the AIS Algorithm to the ECM, the M0, and the WAG Amino Acid Model

Empirical Codon Model (ECM) Mechanistic Codon Model (M0) Empirical AA Model (WAG)

20 subsets 7 subsets 20 subsets 7 subsets 7 subsets

{W} {W} {W} {W} {W}
{YY} {YY}
{FF} {YY FF} {FF(TTY) LL(CTY)} {FF LLLLLL} {Y F}
{LLLLLL} {LL(CTR) LL(TTR)}
{M} {LLLLLL M {M} {M III VVVV {L M I}
{III} II VVVV} {III} EE DD QQ KK}
{VVVV} {VVVV}
{CC} {CC} {CC} {V C}
{TTTT} {TTTT} {CC TTTT
{SSSSSS} {SSSS(TCN)} SS(AGY)
{AAAA} {TTTT {SS(AGY) RR(AGR)} AAAA NN {T
{EE} SSSSSS {AAAA} RR(AGR) S
{DD} AAAA EE DD {EE(GAY) DD(GAR)} GGGG} A E D
{NN} NN QQ KK {NN} N Q K
{QQ} RRRRRR {QQ} R
{KK} HH} {KK} H}
{RRRRRR} {RRRR(CGN)} {RRRR(CGN)}
{HH} {HH} {HH YY}
{GGGG} {GGGG} {GGGG} {G}
{PPPP} {PPPP} {PPPP} {PPPP SSSS(TCN)} {P}

NOTE.—For clarity the codons are generally represented by the amino acid they encode. Where informative, codons are also given, with R 5 purine, Y 5 pyrimidine,

N 5 any base. Boldface distinguishes amino acids from codons.

FIG. 2.—Histogram comparing instantaneous rates estimated from the Pandit data and from simulated M0 data. Note the logarithmic scale on the y
axis. For the ECM estimated from the Pandit database the dark gray bars show the distribution of values of instantaneous rates of double nucleotide
changes and light gray bars represent the rates of triple changes. For the model estimated from M0 simulated data, upward stripes (/) indicate double
changes and downward stripes (\) triple changes, respectively.
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perfect agreement with the genetic code (table 1, ECM, 20
subsets). This recovery of the genetic code is in itself a re-
markable result and shows that amino acid identity is highly
relevant to codon substitution patterns.

A division into 7 subsets is also interesting as it is eas-
ily compared with results from studies on amino acid mod-
els (Kosiol et al. 2004). This leads to a result very similar to
the corresponding grouping of the (empirical) WAG amino
acid replacement matrix (table 1, ECM, 7 subsets cf. WAG,
7 subsets). This similarity is particularly striking as the 2
models were estimated from very different data sets (see
Whelan and Goldman [2001]; Whelan et al. [2006]) and
with 1 data set interpreted at the amino acid level and
the other at the codon level. The grouping derived from
the ECM has the following, biochemically reasonable, in-
terpretation. The codons encoding hydrophilic and basic
amino acids (T, S, A, E, D, N, Q, K, R, H) are grouped
together as are the codons encoding the aromatics (Y,
F). Four amino acids (W, C, G, P) each have a group con-
sisting of only their codons; these singletons appear to be
the most conserved amino acids. All codons of the ali-
phatics (L, M, I, V) form 1 group. In the grouping derived
from the WAG model, the only difference is that valine (V)
is removed from the aliphatic group and placed instead with
cysteine (C).

We have investigated whether the alignment algo-
rithms underlying the Pandit data sets could have added bi-
as toward these results. Pandit alignments are performed on
the proteins’ amino acid sequences, and we wondered
whether amino acid sequence alignments could be biased
toward aligning nonhomologous residues because of
chance amino acid identity or physicochemical similarity.
If so, we would expect this effect to be strongest in hard to
align regions. Our results using stricter criteria for removing
uncertain alignment regions (see above) show no significant
differences, however. Additionally, in a study of proteomic
data sets, we have compared results from sequences aligned
on the amino acid level and on the DNA level, and again
no significant differences were observed (Kosiol and
Goldman, in preparation).

Although instantaneous rate matrices estimated from
DNA alignments might suffer from different artifacts, they
should not suffer from the same alignment artifacts as ma-
trices estimated from amino acid alignments. Thus, the ob-
servation that both matrices show strong influence of the
genetic code and physicochemical properties indicates that
these observed substitution patterns are not artifacts of the
alignment program used.

Applying the AIS algorithm to an instantaneous rate
matrix defined by the M0 model (see Supplementary Ma-
terial online) reveals quite different groups (table 1, M0). In
particular, transition–transversion differences seem to play
an overly important role with too little importance placed on
the identity or physicochemical properties of encoded
amino acids. In the grouping into 20 subsets, for example,
codons encoding phenylalanine (F) share a group with
some of the leucine (L) codons. Likewise, the codons of
serine (S) and arginine (R) are each split over 2 groups.
For the grouping of M0 into 7 subsets, the groups contain
codons coding for mixtures of amino acids with very dif-
ferent physicochemical properties (e.g., {M, I, V, E, D, Q,

K}), and the codons encoding serine and arginine remain
separated. In particular, we note that the serine codons
AGY are grouped with threonine (T; ACN) and alanine
(A; GCN), but the TCN serine codons (only differing by
1 nt from threonine and alanine) are not. Instead, these
are placed with proline (P; CCN) that is also only separated
by 1-nt substitution, but is physicochemically quite differ-
ent. Because the AIS grouping is purely based on replace-
ment rates and not amino acid properties, the discrepancies
observed between groupings and physicochemical proper-
ties can be interpreted as a failure of M0 to reflect evolu-
tionary pressures. In contrast to ECM, the M0 results are
difficult to interpret in a biologically meaningful manner.
Note that these patterns are not fully dictated by inferred
evolutionary dynamics but are to a large degree influenced
by the parametric form enforced in this model (eq. 1).

In contrast, the ‘‘rediscovery’’ of the genetic code and
the detection of biologically meaningful groupings based
on amino acids’ physicochemical properties, both found
from purely evolutionary patterns in the ECM, indicate that
these are highly significant in determining the dynamics of
evolutionary change in protein sequences. These factors are
at best poorly incorporated in existing mechanistic codon
models. Although physicochemical properties were intro-
duced in early codon models by Goldman and Yang
(1994), based on the Grantham matrix (Grantham 1974),
they were subsequently omitted from further developments
of these models (e.g., Nielsen and Yang 1998; Yang et al.
2000). Massingham (2002) used large quantities of data to
estimate empirical exchangeability parameters, finding that
different amino acid pairs have different tendencies to re-
place one another over evolutionary time and that using
these parameters in an evolutionary model gave significant
improvements for many data sets.

Recently, Higgs et al. (2007) developed a mechanistic
codon model that incorporates distances reflecting amino
acid properties and allows for multiple nucleotide changes.
They found that variants that do not include double and tri-
ple substitutions perform worse. Our empirical codon ma-
trix gives further evidence that a much finer distinction than
simply considering whether evolving codons are synony-
mous or nonsynonymous is important to accurate modeling
of protein evolution. A major application of codon models
is the detection of selection, and it is likely that these find-
ings will also have consequences for selection studies.

ML Performance Analysis

We next consider whether our implementation of the
ECM, in combination with mechanistic parameters as de-
scribed in Application of the ECM, performs well in phy-
logenetic analysis of individual protein-coding DNA
alignments.

A small preliminary study showed that among our
j(i, j)-model variants, the likelihood score of
the ECMþFþxþ9j was always best, but the improvement
it gave in likelihood values over any of the less parameter-
rich j-models was never significant. This clearly indicates
that ECMþFþxþ9j is overparameterized and, conse-
quently, the ML analyses we present focus on 0j-, 1j-,
and 2j-models. We compare these to each other and to the
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mechanistic models M0, M7 (Yang et al. 2000), and single
doublet triplet (SDT) model (Whelan and Goldman 2004;
see also Comparison of ECM Variants).

We calculated the MLs for 200 protein family cDNA
alignments under different variants of ECM and also under
M0, M7, and SDT. Table 2 shows the results for 4 repre-
sentative families, and table 3 summarizes the results of the
full test set of 200 families. A brief note on the use of LRT
and AIC in this context is in order: the exchangeability pa-
rameters s�ij are interpreted as fixed although they have in
fact been estimated from 7,332 protein families, 1 of which
is the protein family under investigation. One way to avoid
this problem would be to reestimate another 200 ECMs,
each time removing the test family from the database of
7,332 protein families. However, this would be impracti-

cally time-consuming, and it is highly unlikely that any
1 of the protein families could influence the overall estima-
tion of the ECM enough to create a detectable bias.

Comparison of ECM Variants

First, we assess the performance of the unmodified
ECM and of ECMþF for 200 protein families. For
ECMþF, the 61 codon frequencies can be described by
60 additional free parameters because of the constraintP

j pj51: Using the LRT described in Statistical Compar-
ison of Competing Models, we test for significance using
a v2

60 distribution. Table 2 illustrates this LRT for 4 test data
sets and shows the improvement of ECMþF over ECM to
be significant in 3 cases at the 0.01 significance level. In

Table 2
Log-Likelihood Values for 4 Protein Families under Different Mechanistic Models and ECMs

Model

Family (Pandit ID)

PF01226 PF01229 PF01231 PF01233

M0 �5659.72 �6718.81 �5430.65 �2400.04
M7 �5656.22 �6682.72 �5386.97 �2375.59
ECM �5604.26 �6680.39 �5369.42 �2340.62
ECMþF �5521.26 �6618.70 �5291.26 �2335.20

Improvement over ECMa 83.00** 61.69** 78.16** 5.42
ECMþFþx �5499.90 �6604.24 �5291.25 �2285.63

Improvement over M0b 159.82 114.57 139.40 114.41
Improvement over M7b 156.32 78.48 89.96 54.99
Improvement over ECMþFa 21.36** 14.46** 0.01 49.57**

ECMþFþxþ1j(ts) �5499.58 �6601.98 �5289.41 �2285.54
Improvement over M0b 160.14 116.83 141.24 114.50
Improvement over M7b 156.64 80.47 97.56 90.05
Improvement over ECMþFþxa 0.32 2.26* 1.84 0.09

ECMþFþxþ1j(tv) �5499.56 �6596.51 �5287.64 �2285.23
Improvement over M0b 160.16 122.30 143.01 114.81
Improvement over M7b 156.66 86.21 99.33 90.36
Improvement over ECM þ F þ xa 0.34 7.73** 3.61** 0.40
Improvement over ECM þ F þ x þ 1j(ts)b 0.02 5.47 1.77 0.31

ECMþFþxþ2j �5499.53 �6595.48 �5287.55 �2285.13
Improvement over M0b 160.19 123.33 143.10 114.91
Improvement over M7b 156.69 87.24 99.42 90.46
Improvement over ECMþFþxa 0.37 8.76** 3.70* 0.50
Improvement over ECMþFþx11j(ts)a 0.05 6.05** 1.86 0.41
Improvement over ECMþFþx11j(tv)a 0.03 1.03 0.09 0.10

a For nested models, asterisks indicate statistically significant increases in likelihood (*P , 0.05, v2
1;0:0553:84; v2

2;0:0555:99; and v2
60;0:05579:08 and **P , 0.01,

v2
1;0:0156:63; v2

2;0:0159:21; and v2
60;0:05588:38).

b For nonnested models, the AIC prefers the model with higher likelihood in all cases shown.

Table 3
Comparison of Codon Models over 200 Protein-Coding DNA Data Sets

ECM

þF þFþx þFþxþ1j(ts) þFþxþ1j(tv) þFþxþ2j

M0 200 (n/a) 200 (n/a) 200 (n/a) 200 (n/a) 200 (n/a)
M7 197 (n/a) 200 (n/a) 200 (n/a) 200 (n/a) 200 (n/a)
ECM 70 (111) 123 (152) 125 (156) 131 (158) 132 (159)
ECMþF 184 (181) 191 (186) 195 (194) 196 (188)
ECMþFþx 84 (62) 140 (109) 134 (117)
ECMþFþxþ1j(ts) 200 (n/a) 143 (121)
ECMþFþxþ1j(tv) 89 (73)

NOTE.—The table gives the number of protein families for which the model indicated by the column labels (hypothesis H1 in

LRTs) is significantly better than the model given by the row labels (H0 in LRTs). The upper number given for each model

comparison corresponds to AIC results; for nested models, results of LRTs are below, in parentheses (otherwise the LRT was not

applicable [n/a]).
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table 3, we confirm that for the majority of the test cases
(111 out of the 200) a per-data set estimation of pi improves
the fit of the ECM significantly (P, 0.05). Because the þF
modeling of frequencies is often good and following its al-
most universal acceptance in DNA, amino acid, and codon
models, we adopt its use throughout the rest of this paper.

We then investigated the value of introducing the
mechanistic parameters x and j(i, j) (eq. 6). To confirm
the value of x, a suitable test is to compare (hypothesis
H0) ECMþFþx with (H1) ECMþF, by which we mean
the same model but with the additional constraint x 5 1.
This, in effect, removes x from equation (6) and assumes
that the effects of natural selection are adequately described
for all proteins by the exchangeabilities s�ij estimated from
the 7,738 Pandit data sets. Table 2 illustrates this LRT for 4
test data sets and shows the introduction of x to be signif-
icant (P , 0.01) in 3 cases. Furthermore, we found in 181
out of 200 test cases (see table 3) a significant improvement,
confirming that per-data set estimation of x is highly valu-
able in the ECM. All applications of the ECM discussed
from now on include the parameter x.

The relative success of the different transition–
transversion bias models was also assessed by likelihood-
based tests. Here, results are less clear. Table 2 illustrates
cases where ECMþFþx seems to have adequately cap-
tured the transition–transversion bias (PF01226, PF01233),
where ECMþFþxþ1j(tv) is clearly preferred (data set
PF01231) and where all þ1j- and þ2j-variants appear
to perform well (PF01229). The results from all 200 test
data sets confirm this pattern (table 3). There is no clear-
cut leader among our j-models, although it is interesting
to note that of the þ1j-models, the (tv) variant is always
preferred to the (ts) variant that is more similar to the for-
mulation used in existing mechanistic codon models.

These results suggest that much of the transition–
transversion bias effect is common to many proteins studied
and is quite well modeled by the bias already implicitly cap-
tured by the parameters s�ij: The small observed residual ef-
fect (i.e., some variation in preferred j-model over data
sets) suggests that maybe some slight extra transition–
transversion effect was detected, which is varying between
data sets and is possibly not very well modeled by our j-
models. We investigated whether the small effect measured
by the j-models could be capturing some other variation as
transition–transversion bias varies both at the level of or-
ganisms and genes (e.g., mitochondrially encoded proteins
are known to have elevated levels of bias [Brown et al.
1982]). For families that had unusually improved likeli-
hoods under some j-models, we checked the Pfam
annotation (Bateman et al. 2004) for any unusual features
but could identify no relationships between the organisms
or genes and likelihood performance.

Comparison of ECM with M0 and M7

Having confirmed the ECM with mechanistic param-
eters x and j(i, j) introduced (eq. 6) worthy of further con-
sideration, our main aim is to see how the ECM fares in
comparison with comparable existing mechanistic codon
models. Table 2 illustrates that the log-likelihoods of M0
and M7 were lower than under any of the ECMþFþxþnj

variants of the ECM, significantly so according to the AIC
test. This result was confirmed across each of the 200 test
data sets (table 3).

These results indicate that the ECM gives a very
much more accurate description of the observed patterns
of protein-coding DNA sequence evolution than do the
models M0 and M7. Figure 3 illustrates a comparison of
instantaneous rates, adjusted for codon frequencies, from
M0 and ECM. Although M0 gives only 5 values (0, for
multiple nucleotide substitutions, and 4 other values arising
from its mechanistic transition–transversion bias and
nonsynonymous–synonymous bias parameters), ECM
takes many different values, over a wider range, reflecting
much finer distinctions being made (including differences
in nonsynonymous changes originating from amino acid
properties).

The improvement of ECMþF over M7 in 197 out of
200 cases is particularly impressive because that M7 per-
mits variation of nonsynonymous–synonymous bias among
sites, whereas ECMþF does not even have a family-
specific parameter x. Given the existing success of M7
and variants of it for phylogenetic inference and, particu-
larly, analysis of natural selection, our results argue very
strongly in favor of the use of the ECM and its future
development.

Comparison of ECM with SDT

We also compared the ECM to the mechanistic SDT
model (Whelan and Goldman 2004). The SDT model de-
scribes protein-coding sequence evolution at the codon
level, allowing for single, double, and triple substitutions
both within codons and spanning codon boundaries. The
SDT model’s parameters, estimated on a per-data set basis,
describe the proportions of single, double, and triple
changes, transition–transversion bias on the nucleotide
level, nonsynoymous–synonymous substitution biases
and codon frequencies (for full details, see Whelan and
Goldman 2004).

To make a fair comparison with SDT, we need to
change the method used to parameterize codon frequencies
within the ECM. The SDT model, in common with the

FIG. 3.—Instantaneous rates, adjusted for codon frequencies, from
ECMþFþxþ1j(tv) and M0 estimated for protein family PF01231.
These are calculated as qij/pj from equations (1) (M0) and (6)
ECMþFþxþ1j(tv). Rates of nonsynonymous changes are represented
by þ, rates of synonymous changes by �.
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model of Muse and Gaut (1994), assumes that the instan-
taneous rates of change are proportional to the frequency of
the replacement nucleotides and not the replacement codon.
This parameterization for codon frequencies, referred to as
F1�4MG (Yang 1997), was implemented in our ECM for
comparisons with SDT. It is already available in M0 in the
codeml program (Yang 1997).

Comparison with the SDT model was restricted to a
total of 15 families, corresponding to those analyzed by
Whelan and Goldman (2004) and whose DNA sequences
remain available in the current version of Pandit (see Sup-
plementary Material online for full details). Results for 4
typical protein families are shown in table 4. Of all 15 pro-
tein families studied, PF01056 is the only 1 for which SDT
is preferred to the ECMs according to the AIC. For all other
protein families the ECMs perform better, as illustrated for
PF01226, PF01229, and PF01231 in table 4.

In all 15 comparisons, the SDT model is always better
than M0 (illustrated in table 4), suggesting that SDT, with
its inclusions of single, double, and triple nucleotide sub-
stitutions, was a good attempt at modeling a real effect
(see also Whelan and Goldman 2004). However, the gen-
eral superiority of all variants of the empirical codon in this
study suggests that these have successfully captured more
information on typical patterns of codon substitutions.

LRT comparisons between F61 (table 2) and F1�4MG
(table 4) variants of the ECM for protein families PF01226,
PF01229, and PF01231 show that the F61 variants perform
significantly better. The overall picture among the j-models
remains inconclusive (table 4; see also Conclusions).

Comparison of Estimates of Nonsynonymous–
Synonymous Bias

For the ECM estimated from Pandit, we find xE 5
0.192 (eq. 8). For applications of ECM to other data sets,
this value will vary, obviously greatly affected by estimates
of x and also depending (less strongly) on family-specific
estimates of pj and any j-parameters. We have calculated
xE values from ECMþFþxþ2j for all alignments in our
test set of 200 proteins, and we compare them with corre-

sponding estimates of xM from M0 in figure 4. The xM and
xE values are largely similar as the inset plot of figure 4
shows.

However, there is some interesting variation and, in
particular, we note that the cases with strongest purifying
selection (e.g., xM, 0.1) are often assessed as less extreme
under the empirical model (xE. xM). Conversely, proteins
experiencing weaker purifying selection are generally
assessed as having more constraints under ECM
(xE,xM). Under strong purifying selection most observed
changes will be synonymous. In ECM, however, there is
not only a probability that synonymous change occurs
via single synonymous substitutions, but also a nonzero
probability via nonsynonymous double and triple nucleo-
tide changes, thus, decreasing the inferred strength of pu-
rifying selection. For genes under weaker purifying
selection, more nonsynonymous changes are observed;
ECM allows for a nonzero probability that these nonsynon-
ymous changes happened via multiple nucleotide substitu-
tions to synonymous intermediates, resulting in the
estimation of lower xE values. The changeover value for
these competing effects lies at approximately xE 5
xM 5 0.15 for our test data set of 200 protein families.
In the future, it will require further investigation into what
the 2 parameters xE and xM are measuring and which is
most useful.

Conclusions

We have estimated an ECM, from alignments in the
Pandit database, using a ML method embodied in the
DART software. Analyzing the substitution patterns repre-
sented by ECM allows us to draw conclusions about the
biological pressures and processes acting during codon se-
quence evolution. Existing codon models generally only al-
low for single nucleotide changes. However, our results
indicate that modeling can be significantly improved by al-
lowing for single, double, and triple nucleotide changes.
Groupings of the 61 sense codons into subsets with high
probability of change among codons of each group but
small probability of change between groups shows that
the affiliation between a triplet of DNA and the amino acid

FIG. 4.—Nonsynonymous–synonymous rate ratios for 200 protein
families estimated using ECMþFþxþ2j(xE) and the mechanistic model
M0 (xM). The dotted line indicates xE 5 xM. Note that the inset plot
shows all nonsynonymous–synonymous rate ratios estimated, whereas the
larger plot is an expanded version of the region 0 � xE, xM � 0.1.

Table 4
Log-Likelihood Values for Protein Families from Pandit
under Different Mechanistic Models and ECMs, using the
F134MG Parameterization of Codon Frequencies

Model

Family (Pandit ID)

PF01056 PF01226 PF01229 PF01231

M0 �5483.54 �5853.10 �6865.90 �5567.11
SDT �5360.42 �5771.16 �6818.44 �5508.95

Improvement over M0a 123.12 81.94 47.46 58.16
ECMþFþx �5397.32 �5697.21 �6770.95 �5451.76

Improvement over SDTa �36.90 73.95 47.49 57.19
ECMþFþxþ1j(ts) �5392.67 �5697.19 �6765.33 �5449.78

Improvement over SDTa �32.25 73.97 53.11 59.17
ECMþFþxþ1j(tv) �5373.78 �5696.95 �6753.29 �5445.28

Improvement over SDTa �13.36 74.21 65.15 63.67
ECMþFþxþ2j �5367.29 �5696.79 �6750.14 �5543.90

Improvement over SDTa �6.87 74.37 68.30 65.05

a For nonnested models, the AIC prefers the model with higher likelihood in

all cases shown.
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it encodes is a main factor driving the process of codon evo-
lution. Relationships between different amino acids based
on their physicochemical properties also have a strong
influence.

The observations of multiple nucleotide change and
the strong influence of physicochemical properties are
not reflected in existing mechanistic models such as the
widely used ‘‘M-series’’ of standard codon models (Yang
et al. 2000). The importance of the genetic code may also
be underestimated in existing models. In M0 (eq. 1) and
M7, for example, it is only incorporated through the place-
ment of the parameter xM and is entirely confounded with
the strength of selection. In future, it may be important to
give further consideration to how we should weight the ev-
idence for natural selection given by multiple nucleotide
replacements, nonsynonymous replacements between bio-
chemically similar amino acids, and nonsynonymous re-
placements between biochemically different amino acids.
Our analysis of estimates of parameters representing the
strength of purifying selection derived from existing mod-
els and from our ECM suggests a complex relationship that
requires further investigation before we fully understand
what effects our new model may have on methods for de-
tecting positively selected proteins and proteins sites.

The existence of simultaneous multiple nucleotide
changes is controversial: Averof et al. (2000) find evidence
for simultaneous multiple changes in residues coding for
serines, and results from the use of the SDT model (Whelan
and Goldman 2004) imply that multiple nucleotides
changes occur. However, Bazykin et al. (2004) argue for
successive single compensatory changes instead.

Some of our findings suggest that on the mutation
level only single nucleotide changes occur. In particular,
the relatively common occurrence of double changes in
the 1st and 3rd positions of a codon (e.g., CGT (R) 4
AGA (R); GTG (V) 4 ATC (I); TTG (L) 4 CTA (L);
TTA (L) 4 CTT (L)—see fig. 1) suggests a process of
compensatory change: we do not know of any biological
mechanism affecting noncontiguous nucleotides, and the
relatively lower frequency of triple nucleotide substitutions
means that an explanation by triple mutations that by
chance have matching 2nd positions is highly unlikely.

A highly significant component of our findings is,
however, that codon-level sequence evolution is better
modeled when we include simultaneous multiple nucleo-
tide substitutions. How, then, can we reconcile these 2
aspects of our findings? Arguing on the population level,
realistic rates of mutation per generation (e.g., Neuhauser
2003) mean that the probability of multiple independent
mutations in 1 individual is far too low to explain the pro-
portions of double and triple changes observed in our ECM.
Likewise, recombination events (Nordborg 2003) are not
a plausible explanation for the observed effect: the proba-
bility of an individual having a mutation at 1 site, another
individual a mutation at a neighboring site, and those 2
mating and the crossover placing the 2 mutations onto 1
genome is too low, particularly because the crossovers
would require a break exactly between the 2 neighboring
sites.

Positive selection favoring the compensation for a del-
eterious mutation by a mutation at another, epistatically in-

teracting, site in the genome, seems to be the most likely
mechanism to explain the multiple changes observed. Such
a process will be dependent on often unknown population
genetic factors such as population size, allowing for various
scenarios. Multiple nucleotide changes could be the result
of neutral mutations spreading in a population by genetic
drift (Neuhauser 2003) and then an advantageous mutation
occurring which is positively selected for. In large popula-
tions, mildly deleterious mutations can also be sustained in
a subpopulation (Excoffier 2003); if a compensatory muta-
tion then occurs, it will be positively selected and may
spread through the whole population and be fixed. On
the other hand, small populations are more susceptible to
even deleterious mutations becoming fixed in the popula-
tion (Neuhauser 2003). These mutations may then be fol-
lowed by compensatory mutations that become fixed too:
this mechanism could give a plausible mechanism for serine
switches (AGY (S) 4 TGY (C) or ACY (T) 4 TCY (S)),
where the substitution to the intermediate amino acid is be-
lieved to be very deleterious in general (Averof et al. 2000).

In summary, ECM suggests the existence of double
and triple nucleotide changes, but the study of the patterns
suggests that only single changes occur instantaneously.
The explanation of this apparent discrepancy is that the
multiple changes are in fact successive single changes oc-
curring on a much faster timescale. This is expected from
our explanation as positive selection will act to fix compen-
satory mutations at a much higher rate than neutral or
mildly deleterious mutations. The phylogenetic application
of ECM is successful because phylogenetic data represent
evolution over long timescales and cannot discriminate the
short timescales over which compensatory changes occur.

Similar arguments have been used to explain pairs of
changes in sequences encoding functional RNA structures.
Here, mutations that change a single base in a stem region
of an RNA molecule are rare because there is strong selec-
tion to maintain complementary base pairing. Replacement
of paired bases by different complementary pairs does,
however, occur regularly in stem regions. This process
has also been successfully modeled as an instantaneous
change of multiple nucleotides (Higgs 1998; Savill et al.
2001). However, this topic requires further study, for exam-
ple, by combining comparative analysis with large-scale
polymorphism data (e.g., HapMap (The International Hap-
Map Consortium 2003) and the Trace Archive (2006)).

We also tested ECM for utility in phylogenetic analy-
ses. Past experience suggested that it would be beneficial to
consider combining some mechanistic parameters with the
pure ECM, and our choice of parameters was oriented to-
ward those used in existing mechanistic codon models used
for the detection of selection: codon frequencies, transition–
transversion bias, and nonsynonymous–synonymous bias
were used and combined models successfully implemented
in PAML. Various parameterizations of the transition–
transversion j(i, j) (eq. 6) were investigated, inspired by
new scenarios which arise because instantaneous single,
double, and triple nucleotide changes are permitted in the
ECM. Compared with the simplest model, the more com-
plex transition–transversion bias models can further im-
prove likelihoods significantly in many, but clearly not
all, cases. We recommend consideration of four j-models
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(ECMþFþx, ECMþFþxþ1j(ts), ECMþFþxþ1j(tv),
and ECMþFþxþ2j) with choice among them determined
using LRTs on a per-data set basis.

Overwhelmingly, the empirical models outperform the
mechanistic models M0 and M7 and these results argue
very strongly in favor of reconsidering codon models which
do not treat all nonsynonymous changes equally (Massingham
2002). However, the original Goldman and Yang model
which incorporated amino acid properties based on the
Grantham matrix is known to perform worse than M0
(Yang et al. 1998). We therefore focus further comparisons
to mechanistic models allowing for multiple nucleotide
changes, and we show that ECM outperforms the SDT
model in most cases. This proves that our ECM is suitable
for use in phylogenetic analysis. Because codon models are
becoming an option in phylogenetic reconstruction, despite
their computational burden (Ren et al. 2005), we hope that
our ECMs will be used for this purpose.

The mechanistic models M0 and M7 form the basis of
current methods for detecting the footprints of positive se-
lection acting on protein evolution (Yang et al. 2000). Great
advances in the power to detect selection have been
achieved by adapting M0-type models to allow for hetero-
geneity of nonsynonymous–synonymous biases among
protein sites: for example, M7 uses a b-distribution of x
values and M8 adds the possibility of codons evolving with
x. 1. It is remarkable that our ECM, which assumes a ho-
mogeneous pattern of evolutionary change at all sites, con-
sistently outperforms M7 in our test set of 200 alignments.
We have indicated how our per-data set estimates of the
parameter x can be used to compute a measure that is, in ef-
fect, the protein-wide average synonymous–nonsynonymous
bias. This gives values comparable to those obtained us-
ing the mechanistic M0 model. In the future, we plan to
adapt our ECM to incorporate site-specific synonymous–
nonsynonymous biases and investigate to the consequences
for studies aimed at determining the existence and location
of selective effects.

Supplementary Material

Supplementary materials are available atMolecular Bio-
logy and Evolution online (http://www.mbe.oxfordjournals.
org/).
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