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The distribution of selection coefficients of new mutations is of key interest in population genetics. In this paper we
explore how codon-based likelihood models can be used to estimate the distribution of selection coefficients of new
amino acid replacement mutations from phylogenetic data. To obtain such estimates we assume that all mutations at the
same site have the same selection coefficient. We first estimate the distribution of selection coefficients from two large
viral data sets under the assumption that the viral population size is the same along all lineages of the phylogeny and that
the selection coefficients vary among sites. We then implement several new models in which the lineages of the
phylogeny may have different population sizes. We apply the new models to a data set consisting of the coding regions
from eight primate mitochondrial genomes. The results suggest that there might be little power to determine the exact
shape of the distribution of selection coefficient but that the normal and gamma distributions fit the data significantly
better than the exponential distribution.

Introduction

The distribution of selection coefficients (s) of new
mutations has been the focus of many population genetical
studies. Major theories of molecular evolution differ in
their assumptions regarding this distribution. For example,
the original version of the neutral theory of molecular
evolution, Kimura’s (1968) strictly neutral model, assumes
that all new mutations are either neutral (s¼ 0) or strongly
deleterious (s¼�‘). In a population evolving according to
this model, all segregating alleles have the same fitness
assigned to them. This model is still heavily used in
population genetics. Most studies aimed at estimating
demographic or ancestral parameters using molecular
markers, either implicitly or explicitly, assume this model,
or one of its close relatives. For example, the classical
coalescence model (e.g., Kingman 1982; Hudson 1990)
assumes strict neutrality. Tests of neutrality such as
Tajima’s D test (Tajima 1989) and the HKA test (Hudson,
Kreitman, and Aquade 1987) are tests of the strictly neutral
model. Common methods for estimating migration rates,
such as those based on FST, also assume strict neutrality.
Given the importance of this assumption in these and other
applications, it is no wonder that much of the theoretical
part of the population genetics literature has focused on the
distribution of selection coefficients.

The first important modification to Kimura’s model
was proposed by Ohta (1973). In her slightly deleterious
mutation theory, new mutations have exponentially
distributed negative selection coefficients. This model
allows some mutations to be slightly deleterious, while
no positive selection is allowed. A generalization of this
model was provided by Kimura (1979, 1983), who
suggested that the negative selection coefficients follow
a gamma distribution. Kimura named this model the model
of effectively neutral mutations.

There have also been many suggestions of models that
involve positive selection coefficients. For example, in the

classical Fisherian model (Fisher 1930a), the fitness effect
of a new mutation is inversely related to the difference of
the new allele from the ancestral allele, while both positive
and negative selection coefficients are allowed in the
model. Ohta (1992) proposed a modification of her original
model, to allow a proportion of new mutations to have
positive selection coefficients. This model is known as
the nearly neutral model and is similar to some of the
selection models discussed in Gillespie (1991). In fact,
the current controversy regarding the distribution of selec-
tion coefficients is often reduced to a discussion of the
relative importance of positive selection. Nonetheless, be-
cause of mathematical convenience, the strictly neutral
model remains the most commonly assumed model in
population genetic studies of demography or ancestral
history.

Codon-Based Likelihood Models

For protein-coding genes, a measure of selective
pressure on amino acid replacement mutations is the
nonsynonymous/synonymous substitution rate ratio (x ¼
dN/dS). Recent computational advances have made infer-
ences regarding the distribution of x among sites possible
(Nielsen and Yang 1998; Yang et al. 2000). To estimate
x, we describe the evolutionary process in nucleotide se-
quences at the codon level as a continuous time Markov
chain, with state space on the 61 possible sense codons in
the universal genetic code (or the 60 sense codons in the
vertebrate mitochondrial code). The infinitesimal rate of
change from codon i to codon j in these models is
(Goldman and Yang 1994; Muse and Gaut 1994):

qij ¼

0; if the two codons differ at more than

one position,

pj; for synonymous transversion,

jpj; for synonymous transition,

xpj; for nonsynonymous transversion,

xjpj; for nonsynonymous transition,

8>>>>>><
>>>>>>:

ð1Þ
where pj is the stationary frequency of codon j and j is
the transition/transversion rate ratio. For multiple DNA

Key words: dN/dS, maximum likelihood, selection coefficients,
neutral theory, mitochondrial DNA, positive selection.

E-mail: rn28@cornell.edu.

1231

Mol. Biol. Evol. 20(8):1231–1239. 2003
DOI: 10.1093/molbev/msg147
Molecular Biology and Evolution, Vol. 20, No. 8,
� Society for Molecular Biology and Evolution 2003; all rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/20/8/1231/1081609 by guest on 20 M
arch 2024



sequences, this process is superimposed on the lineages
of a phylogeny. Using Felsenstein’s (1981) algorithm and
the model in equation 1, it is possible to calculate the
probability of the data, given a set of parameters such as j,
x, and the branch lengths. Therefore, it is possible to
estimate x using maximum likelihood. Parameters j and pj
reflect mutational pressure, whereas the effect of selection
at the protein level is captured in the parameter x.

Nielsen and Yang (1998) and Yang et al. (2000)
extended this model to the case in which x varies among
sites. In one model, x was a random variable that takes the
value 1 with probability p and 0 with probability 1 � p.
This model was interpreted as a strictly neutral model of
evolution. If the selection coefficient is the same for all
nonsynonymous mutations in a particular codon site, this
distribution of x among sites is predicted from Kimura’s
(1968) strictly neutral model of evolution. This model was
extended by adding a proportion of sites with x . 1.
Comparison between the two models using a likelihood
ratio test constitutes a test of the neutral model against
a positive selection alternative.

In Yang et al. (2000), several new models for variation
in x were introduced, varying in complexity from a simple
gamma distribution of x among sites to a mixture of three
normal distributions. Some limited power was found in
distinguishing the various models (Yang et al. 2000). For
example, in all the 10 data sets analyzed, the strictly neutral
model gave a significantly worse fit to the data than a model
with an additional category of sites in which x was a free
parameter. However, very little power was detected to
distinguish between the more parameter-rich models. In
eight out of the 10 cases, the likelihood values obtained
under a simple gamma distribution and under a parameter-
rich mixture of three normal distributions were within 1
log-likelihood unit of each other.

As the nonsynonymous/synonymous substitution rate
ratio x is a measure of selective pressure acting on the
protein, it is possible to use codon-based likelihood models
to make inferences regarding the distribution of selection
coefficients of nonsynonymous mutations. In this paper,
we will illustrate how this can be done. We will develop
some new codon-based likelihood models derived from
population genetics models, and we will estimate param-
eters of these population genetics models and compare the
fit of the models using likelihood ratio tests. Our analyses
are based on relatively strong assumptions about the
mutation process. In particular, we will assume that all
nonsynonymous mutations in the same site have the same
selection coefficient. This assumption may not be met in
many cases. However, without a function mapping
selection coefficients to values of x, little or no progress
can be made on estimating the distribution of selection
coefficients.

Several previous methods have been suggested for
estimating the distribution of selection coefficients, often
based on interspecific data using allelic distributions, or
frequency spectrums (e.g., Bustamante et al. 2002; Fay,
Wyckoff, and Wu 2001). The new method differs from
such methods in that it only considers interspecific data
and does not use information regarding the allelic
distribution within species.

Material and Methods
Estimation Under a Constant Population Size Among
Lineages

One of the important differences between the sub-
stitution rate ratio x and the selective coefficient s is that s
is a property of a particular allele or mutation, whereas x,
as formulated in current codon models, is a property of
a particular site or collection of sites in the DNA sequence.
It is therefore possible to infer the distribution of s from the
estimated distribution of x only if we make additional
assumptions in the mutation model. In fact under most
models, it is possible to map the distribution of x into
a distribution of s. Sawyer and Hartl (1992) demon-
strated how to convert an estimate of x into an estimate of
s, assuming an infinite sites model. We will apply a similar
method to the finite sites models considered in this
article.

Assume that there is no interference in the fixation
process of multiple mutations at different sites. This will
be true for interspecific data if there are not many strongly
or moderately selected mutations segregating at the same
time or if the level of recombination between sites is
sufficiently high. If this assumption is not met, our method
will tend to underestimate the selection coefficients.
Additionally, we will assume that there are never more
than two alleles segregating at the same nucleotide site.
This is a reasonable assumption when the expected time to
fixation or extinction measured in generations is short
compared with the inverse of the mutation rate. This
assumption should be valid for most organisms.

Under these assumptions, the fixation rate of new
mutations with selection coefficients s is the product of the
mutation rate (l) per site, the chromosomal population size
(N) in a haploid organism, and the probability of fixation
(Kimura 1962),

lN2s
1� e�2Ns

; ð2Þ

if we assume s is small and N is large and equal to the
effective population size. This result can be derived under
a variety of population genetics models, such as the
Wright-Fisher (e.g., Fisher 1930b) model and the Moran
(1962) model. Likewise the rate of substitution of neutral
mutations is Nl/N ¼ l. If we assume that all non-
synonymous mutations at the same amino acid site have
the same selection coefficient and that all synonymous
mutations are neutral we have

x ¼ S

1� e�S
; ð3Þ

where S¼ 2Ns. Mitochondrial genes in diploid organisms
can be treated as genes segregating in haploid organisms,
and nuclear genes can be treated by redefining S¼4Ns. By
using the inverse mapping from x to S, the distribution of
selection coefficients can be obtained from the distribution
of x. For a monotone function, such as equation 3, the
transformation from random variable X to Y¼g(X) is given
by FY(y)¼FX(g

�1[y]), where FY(a) and FX(a) are the CDFs
for the random variables Y and X, respectively, evaluated
at point a. We notice that this approach is conceptually
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similar to the approach used by Halpern and Bruno (1998)
for calculating genetic distances.

Yang et al. (2000) have previously developed models
of varying x among codon sites. For example, in one of
the models it is assumed that x is gamma distributed
among codon sites with parameters a and b (model M5 in
Yang et al. 2000). The probability density function for S
(using equation 3) is thus given by

f ðSÞ ¼ ðbeSS=hðSÞÞae�beSS=hðSÞðhðSÞ � SÞ
ShðSÞ�ðaÞ ; �‘, S,‘;

ð4Þ
where h(S)¼ (eS� 1). Here we have assumed that S and N
do not vary among lineages. We will use this model to
estimate the distribution of selection coefficients for two
large viral DNA data sets. For such data, the model of
constant N among lineages might be realistic if the virus
has visited many different hosts along each lineage of the
phylogeny. If we assume the viral population size follows
some probability distribution among hosts, assumed to be
constant in time, the mean population size will converge to
the same value for all lineages. As a first approximation we
will, therefore, approximate the distribution of selection
coefficients using equation 4 applied to constant popula-
tion sizes. However, in practice, little is known about the
variation in population size among viral lineages. Also, for
the analysis of data from multiple species, the assumption
of constant N among lineages seems rarely to be justifi-
able. Therefore, one of the objectives of this article is to
develop models that will relax this assumption.

Models of Varying N Among Lineages

Our goal here is to develop models that will allows us
to estimate the effective population sizes in different
lineages of a phylogeny jointly with the distribution of
selection coefficients among sites. One of the major aims is
to investigate to which degree it is possible to distinguish
between different distributions of selection coefficients
using phylogenetic data. The methods we develop will be
applied to a previously published data set of complete
mitochondrial genomes from eight primate species (Yoder
and Yang 2000).

The codon-based substitution models are parameter-
ized in terms of the population genetics parameters s and

N. We make the simplifying assumption that the selection
coefficient acting on new mutations at a site is constant in
a particular lineage; that is, all mutations occurring at the
same site have the same selection coefficient. We will also
assume that the population size along each lineage of the
phylogeny is a free parameter; that is, we allow variation
of population size among lineages in the phylogeny. The
value of x at site i in lineage j is then

xij ¼
2Njsi

1� e�2Njsi
; ð5Þ

where Nj is the population size in lineage j and si is the
selection coefficient acting on new mutations in site i. The
rate of change in site i and lineage j is then obtained by
inserting equation 5 for x in equation 1.

Ten different models are implemented, allowing
different assumptions regarding Nj and si. To keep the
models identifiable, we may only estimate the relative
population sizes. We can, for example, fix the size of the
human population and estimate the population sizes in all
the other lineages relative to the human population size.
The parameters of the models are then the relative
population sizes and those in the distribution of S ¼ 2Ns.
The models differ from previous approaches in that they
are parameterized directly in terms of selection coeffi-
cients. Estimates of S cannot be obtained simply by
transforming estimates of x in most of these models
because N is allowed to vary among lineages.

Analytical calculation of the likelihood function
under the continuous distributions is not computationally
possible. Instead we approximate the distributions using
10 discrete categories as in Yang et al. (2000). A summary
of the models is provided in table 1.

In the first model (model 1) we assume that x is
constant among lineages and among sites (i.e., si¼s for all i
and Nj¼N for all j). In addition to branch lengths and j, this
model has one parameter: x. We cannot estimate s and N
separately. This is the model of Goldman and Yang (1994).

In the second model (model 2), we assume that the
effective population size varies among lineages but that
si¼ s for all i. Model 2 has 13 parameters: 12 values of N
and one value of s. There are eight species, resulting in
13 different lineages in an unrooted tree. Since we can
only estimate the relative population sizes, there are 12
values of N to estimate.

Table 1
Models Implemented in This Paper and Maximum-Likelihood Estimates of Parameters Obtained from the mtDNA Data Set

Model
Number of
Parameters Maximum ‘ Parameter Estimates

1. Constant x 1 �38,884.38 x ¼ 0.0504
2. Lineage variation 13 �38,859.04 S ¼ �2.4
3. Normal 14 �38,357.91 l ¼ �1.72, r ¼ 0.72
4. Normal , 0 14 �38,357.60 l ¼ �1.72, r ¼ 0.77
5. Reflected gamma 14 �38,358.32 a ¼ 3.22, b ¼ 1.62
6. Reflected exponential 13 �38,501.08 k ¼ 0.214
7. Normal þ invar. 15 �38,355.75 l ¼ �1.36, r ¼ 0.53, p0 ¼ 0.336, p1 ¼ 0.664
8. Reflected gamma þ invar. 15 �38,358.12 a ¼ 3.58, b ¼ 2.02, p0 ¼ 0.124, p1 ¼ 0.876
9. Reflected exponential þ invar. 14 �38,501.08 k ¼ 0.214, p0 ¼ 0.0, p1 ¼ 1.0
10. S ¼ 0 or S ¼ �1000 1 �39,883.91 p0 ¼ 0.701, p1 ¼ 0.299
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Model 3 assumes that s follows a normal distribution
among sites with mean l and variance r2. This model has
14 parameters: 12 values of N and l and r2.

Model 4 is identical to model 3, except that the
normal distribution has been truncated such that values of
s . 0 are not allowed; that is, no positive selection is
allowed. This model also has 14 parameters.

In model 5 it is assumed that s follows a gamma
distribution reflected around the s¼ 0 axis; that is,

f ðsÞ ¼ ba�ðaÞ�1
ebsð�sÞa�1

; s � 0: ð6Þ

This model has 14 parameters.
In model 6 it is assumed that s follows a reflected expo-

nential distribution reflected around the s¼ 0 axis; that is,

f ðsÞ ¼ keks; s � 0: ð7Þ

This model has 13 parameters.
Models 7, 8, and 9 are identical to models 2, 3, and 5,

respectively, except that an extra category of sites (with
proportion p0) in which s ¼�‘ (x ¼ 0) is added to each
model. The proportion of variable sites is then p1¼ 1� p0.
Therefore, the number of parameters in models 7, 8, and
9 are 15, 15, and 13, respectively. The reason for
implementing these models is that we are mostly interested
in the distribution of selection coefficients in sites that may
vary. If many sites are completely functionally con-
strained, such that all new mutations are immediately lost
from the population, our parameter estimates may be
heavily influenced by the presence of such sites.

In the last model (model 10), it is assumed that all
new mutations at a site are either neutral (s¼0) or strongly
deleterious (s¼�‘). In such a model, it is not possible to
estimate population sizes for different lineages, since N
does not influence the proportion of neutral sites. There is,
therefore, only one parameter: p0, the proportion of
invariable sites. This model is equivalent to the neutral
model of Nielsen and Yang (1998).

Note that models 3 to 9 differ from all models
implemented previously, not only in the distributional
assumptions but also in allowing the effect of selection to
vary simultaneously among lineages and among sites.
Such models are necessary to allow variation in N among
lineages while inferring the distribution of selection
coefficients. At the level of computation, these models
are much more demanding because they require the
recalculation of the transition matrices for each branch
and for each site class. A computationally more efficient
alternative for allowing variation among lineages and sites
simultaneously was described in Yang and Nielsen (2002).
However, the method considered in Yang and Nielsen
(2002) allows only a few categories of sites and cannot
easily be used to estimate the distribution of selection
coefficients.

Viral Data

We first use the model of fixed N among lineages and
gamma distributed x to estimate the distribution of
selection coefficients among sites in two large viral data
sets. The first data set consists of 421 codons from each of

186 sequences from the HIV-1 env gene. This data set was
previously analyzed by Yamaguchi-Kabata and Gojobori
(2000) and Yang (2001). The second data set consists of
329 codons from each of 349 sequences from the human
influenza virus H3 hemagglutinin gene. It was previously
analyzed by Bush et al. (1999) and Yang (2000). A more
detailed description of the two data sets can be found in
these references. The data sets are analyzed assuming x is
gamma distributed among sites and that this distribution is
constant among lineages. For computational and statistical
details, see Yang et al. (2000). After the parameters of
the gamma distribution have been estimated, the distribu-
tion of x is transformed into a distribution of S using
equation 4.

Both of the viral genes analyzed are known to
undergo strong positive selection; that is, there are multiple
sites for which S . 0 (or x . 1). They code for the coat
proteins of the two viruses, which are primary targets for
the host immune system. It is generally believed that the
positive selection is driven by a selective pressure to avoid
host immune recognition. For those data sets, it is entirely
possible that more than two nucleotides may be segregat-
ing at the same time in a site. For positively selected sites,
the effect will presumably be to underestimate the
magnitude of the selection coefficient.

mtDNA Data

This data set consists of eight whole mitochondrial
genomes from human (Homo sapiens [GenBank accession
number X93334]), common chimpanzee (Pan troglodytes
[GenBank accession number X93335]), bonobo (Pan
paniscus [GenBank accession number D38116]), gorilla
(Gorilla gorilla [GenBank accession number X93347]),
Bornean orangutan (Pongo pygmaeus p [GenBank acces-
sion number D38115]), Sumatran orangutan (Pongo
pygmaeus abelii [GenBank accession number X97707]),
gibbon (Hylobates lar [GenBank accession number
X99256]), and hamadryas baboon (Papio hamadryas
[GenBank accession number Y18001]). The data set was
previously analyzed by Yoder and Yang (2000) for
molecular clock dating. Only the 12 protein-coding genes
on the same strand of the genome are used; after alignment
and removal of gaps, each sequence consists of 3,593
codons.

For each of the models discussed above, the likeli-
hood function can be calculated as in Yang et al. (2000),
which the reader can refer to for computational details. For
the continuous distributions of selection coefficients,
calculations are performed by discretizing the density
function using 10 categories (see Yang et al. 2000). The
topology of the phylogeny is assumed to be known, and
the branch lengths of the phylogeny are estimated by
maximum likelihood, together with parameters in the
distribution of S, as summarized in table 1. The likelihood
function is calculated efficiently by storing the calculated
transition probability matrices for each rate category in
each lineage in the computer memory. Optimization of the
likelihood function takes between a few minutes to about
12 h on a PC, depending on the model.
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Results
Analysis of HIV-1 and Human Influenza Viral Data Sets

The estimates of a and b in the gamma distribution
of x for sites for the HIV-1 env gene were âa¼ 0.373 and
b̂b¼ 0.523. These estimates are obtained using the methods
described in Yang et al. (2000) and Yang (2000). The
resulting distribution of S is plotted in figure 1a. About
22.6% of all new mutations are advantageous with positive
selection coefficients. This is also the proportion of sites
at which x . 1. However, since advantageous mutations
have higher probabilities of going to fixation in the popu-
lation than neutral or deleterious mutations, they will
account for a much larger proportion of observed substi-
tutions. In fact this proportion is given by

R ‘
0

f(S)ðS=
ð1� e�SÞÞdS=

R ‘
�‘

f(S)ðS=ð1� e�SÞÞdS. For the HIV-1 env
gene, this proportion is 0.749. Therefore, the 22.6% of ad-
vantageous mutations account for about three quarters of
the substitutions.

The estimates of the parameters of the gamma
distribution were âa ¼ 0.306 and b̂b ¼ 0.298 for the
influenza virus hemagglutinin gene (figure 1b). The
proportion of new mutations that are positively selected
is then 0.280, slightly higher than for the HIV-1 env gene.
The proportion of fixed mutations that are positively
selected is 0.851 for the hemagglutinin gene.

We notice that the assumption of no interference
among mutations may not hold for the influenza data set.

The result is that we probably tend to underestimate the
magnitude of the selection coefficients. The real proportion
of fixed mutations that are positively selected may,
therefore, be even higher than 0.851.

Analysis of Mitochondrial Protein-Coding Genes

Table 1 summarizes the results obtained from analysis
of the mtDNA data. The phylogenetic tree is shown in
figure 2. The maximum-likelihood value for a model with
no variation in N among lineages and no variation in S
among sites is�38,884.38 (model 1). If we add variation in
N among lineages, the maximum-likelihood value is
�38,859.04 (model 2). This difference is significant
(2�‘ ¼ 50.68, P ’ 10�6, df ¼ 12), indicating a lineage
specific variation in the dN/dS ratio. Nevertheless, given the
amount of data, the likelihood difference is not very large,
although statistically significant.

Model 3 assumes that the selection coefficients are
normally distributed among sites. The improvement in log
likelihood over amodel with no variation in s is 526.47. This
difference is highly significant asmodel 3 has only onemore
parameter than model 1. Evidently, variation in S among
sites is important in explaining the causes of molecular
evolution in mitochondrial DNA. In previous studies (e.g.,
Nielsen and Yang 1998; Yang et al. 2000), it was also found
that accounting for variation in x among sites greatly
increases the fit of the models. As wewould expect based on
knowledge of protein structure and function, the selection
coefficients acting on newmutations are highly site specific.

Model 4 differs from model 3 in that no sites with
s . 0 are allowed, and the model allows only neutral or
negatively selected new mutations. The likelihood under
this model is almost identical to that under model 3.

Allowing the selection coefficients to follow a re-
flected gamma distribution among sites (model 5) gives

FIG. 1.—The distribution of scaled selection coefficient (S¼ 2Ns) in
the HIV-1 env gene (a) and the human influenza virus hemagglutinin
gene (b) estimated assuming a gamma distribution of x among sites
(equation 4).

FIG. 2.—The phylogenetic tree of eight primate species for the data
of 12 mitochondrial protein-coding genes. Branch lengths are pro-
portional to the expected number of synonymous substitutions. The
numbers adjacent to species names and internal branches are maximum-
likelihood estimates of N for each branch, relative to the human
population size, obtained under model 8 (reflected gammaþ invariable).

Estimating the Distribution of Selection Coefficients 1235

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/20/8/1231/1081609 by guest on 20 M
arch 2024



a maximum-likelihood value very similar to the value
obtained under the normal distribution (model 4). It is not
surprising that a normal and a reflected gamma distribution
may give similar fit, since the gamma distribution tends to
a normal distribution as a becomes large. By inspecting
figure 3, we also notice that the estimated shapes of the
distribution are quite similar under the two models.

The reflected exponential distribution (model 6) gives
a much poorer fit to the data than the reflected gamma and
the normal distributions. Even though model 6 only has one
parameter less than models 3, 4, and 5, the maximum-
likelihood value is about 140 likelihood units worse. This is
quite a large difference. The explanation appears to be that

the reflected exponential distribution cannot accommodate
enough probability mass in the region�2.5 , s ,�0.5.

Models 7, 8, and 9 are identical to models 3, 5, and 6
except that an extra category of invariable sites have been
added. Adding a category of invariable sites led to only
marginal increases in likelihood for all of the models,
although the parameter estimates changed. The estimate of
the proportion of invariable sites vary from 0.0 to 0.124.
The explanation for the small increase in likelihood is
probably not that invariable sites are rare, but more likely,
that we do not have much power to distinguish between
parameter-rich models. The same observation was made in
Yang et al. (2000). The model providing the best fit, of all

FIG. 3.—Estimated densities of scaled selection coefficients (S ¼ 2Ns), where N is the human population size. Estimates are obtained from the
mtDNA data for model 3 (normal), model 4 (truncated normal), model 5 (reflected gamma), model 6 (exponential), model 7 (normalþ invariable), and
model 8 (reflected gammaþ invariable).
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the models analyzed here, is the one assuming a normal
distribution and an additional category of invariable sites.
This model places a lot of probability mass around�2.5 ,
S , �0.5, but also allows for some invariable sites.

Model 10 assumes that sites come in two flavors, sites
that are completely invariable and sites in which all new
mutations are neutral. This corresponds to the strictly
neutral model in Nielsen and Yang (1998). This model
performs significantly worse than all other models. It
has the same number of parameters as model 1 but is
nearly 1,000 likelihood units worse. Clearly, sites at which
�‘ , s , 0 are dominant in the evolution of mtDNA.

The branch lengths in figure 2 are proportional to
the expected number of synonymous mutations for the
reflected gamma þ invariable model of selection coef-
ficients. In addition, the estimated population sizes,
relative to the human population size, are also shown for
each branch. Notice that all estimates are within the same
order of magnitude. Although this is not theoretically
impossible, it does appear to be somewhat unlikely.
Further research is warranted to explain this observation.

Discussion

A model of normal or reflected gamma distributed
selection coefficients appear to fit the data much better than
a model assuming reflected exponentially distributed
selection coefficients. The motivation for Kimura to suggest
the gamma distribution (Kimura 1979) was that the
reflected exponential distribution could not accommodate
enough moderately selected mutations; that is, mutations
with selection coefficients on the order of 1/N. It seems that
the mathematical arguments provided by Kimura (1979,
1981) now have found empirical support. A distribution
with much of the probability mass located in the region
around 1/N seems in fact to provide the best fit, and
a reflected exponential distribution of selection coefficients
can easily be rejected. Figure 3 shows the shapes of the
estimated distributions. With the exception of the reflected
exponential distribution, most of these shapes are similar to
a lot of probability mass in the region�2.5 , S ,�0.5. It
seems that weakly selected mutations are highly important
and that completely neutral and/or positively selected
mutations are of only little importance in mammalian
mtDNA evolution. This is also emphasized by the fact
that a strictly neutral model provides a very poor fit to the
data.

Very little is known from experimental data re-
garding the distribution of fitness effects of spontaneous
mutations. Most experimental evidence regarding the
fitness effects of new mutations comes from mutation
accumulation experiments from Drosophila, such as the
early experiments conducted by Mukai and colleagues
(e.g., Mukai 1964; Mukai et al. 1972). In general, these
experiments suggest that most mutations are deleterious
and of small effect. Keightley (1994) reanalyzed data from
Mukai et al. (1972) and Ohnishi (1974). Assuming a
genome-wide mutation rate of 0.4, he obtained maximum-
likelihood estimates of gamma distributions with very
high variance of mutational effects (a , 1); that is, with
a majority of mutations having very little effect on fitness.

This contrasts with our results, which suggest a distribu-
tions with very little probability mass centered around S¼
0 and (a . 1) for the gamma distribution. The data
analyzed, the scaling of the parameters, and the underlying
assumptions differ much between the two studies, so it is
not surprising that the results differ. It is possible that our
assumption of constant fitness effects of mutations occur-
ring in the same site may increase the discrepancy between
the two results.

InYang et al. (2000), statistically significant (5% level)
evidence for the existence of positively selected sites was
detected in a different data set containing seven of the eight
sequences analyzed here. A model in which x is assumed to
follow a beta distribution was compared with a model in
which x was assumed to follow a mixture distribution of
a point mass located at x . 1 and a beta distribution. The
two models were compared using a likelihood ratio test,
which rejected the beta distribution model. However, in this
study, it was found that a normal distribution of values of
S fits the data worse than a normal distribution truncated at
S , 0. One possible explanation for the discrepancy is the
difference in model assumptions between the two studies.
The test based on the beta distribution of x may be more
powerful. Also, the data differs slightly between the two
studies by the inclusion of the baboon sequence in the
present study.

Our major objectives in this paper were (1) to
investigate whether we can use phylogenetic data to distin-
guish between different distributions of selection coeffi-
cients and (2) to determine which of the most common
population genetics models of molecular evolution best fits
the mtDNA data. It seems that we can in fact distinguish
different distributions of selection coefficients. In particu-
lar, Kimura’s (1979) effectively neutral model seems to fit
the data much better than the exponential model of Ohta
(1973), and a strictly neutral model (Kimura 1968) can be
easily rejected. However, it appears that we do not have the
power to distinguish between more parameter-rich distri-
butions or between distributions with similar shapes, such
as the reflected gamma and the normal distributions.

To make these inferences, we have to make some
assumptions. Probably the most problematic assumption is
that all new mutations at a site have the same selection
coefficients. In the following, we discuss an alternative
model that assumes that each of the four possible
nucleotides in a site has a fixed fitness. The substitution
process in a nucleotide site can then be described as
a continuous time ergodic Markov chain with four states (1,
2, 3, 4) in which a transition between any of the states
corresponds to a fixation event. The stationary frequencies
of the Markov chain (p1, p2, p3, p4) obey the equations

pi
X
j 6¼i

rij

 !
¼
X
j 6¼i

pjrji p1 þ p2 þ p3 þ p4 ¼ 1; ð8Þ

where rij is the rate of transition from state i to j.
Assume that one of the nucleotides (say nucleotide 1) has
a relative fitness of 1 þ s, and the remaining three
nucleotides have a relative fitness of 1. Assume further that
mutations between all four states occur at the same rate
(l), then
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p1Prð fix 1 ! 2;3;4ÞNl
¼ ðp2 þ p3 þ p4Þ Prð fix 2;3;4 ! 1ÞNl=3;
p2 ¼ p3 ¼ p4; p1 þ p2 þ p3 þ p4 ¼ 1 ð9Þ

Where Pr( fix 2, 3, 4 fi 1) is the probability of fixation of
a new type 1 mutant in a type 2, 3, or 4 background and
Pr( fix 1 fi 2, 3, 4) is the probability of fixation of a new
type 2, 3, or 4 mutant in a type 1 background. For small
values of s (i.e., assuming s fi 0, N fi ‘, and 2Ns fi S ),
the solution to these equations is given by

p1 ¼
eS

3þ eS
; p2 ¼ p3 ¼ p4 ¼

1

3þ eS
: ð10Þ

The nonsynonymous/synonymous rate ratio can then be
calculated as

x ¼ 1

l

X4
i¼1

pi
X
j 6¼i

Nl
3

Prð fix i ! jÞ ¼ 2ððSþ 1ÞeS � 1Þ
�3þ 2eS þ e2S

:

ð11Þ
This result could easily be generalized to cases of unequal
mutation rates and more complicated selection schemes.

Equations 3 and 11 are plotted in figure 4. Notice that
the pattern observed in the two models is quite different. In
the first model, x is a strictly increasing function of the
selection coefficient. In the second model in contrast, the
highest value of x is obtained at S ¼ 0. This model is
effectively a model of constrained evolution in which
a particular nucleotide represent the optimum. The
difference between the two models demonstrates that any
inferences will be strongly dependent on the specifics of
the model.

The two models considered here represent extremes.
In one case, the fitnesses associated with each allele
remain constant over evolutionary time scales, and in the
other case, the fitnesses are reassigned each time a new
mutation occurs. More realistic evolutionary models would
probably incorporate only occasional reassignments of
fitnesses.

We have here explored the problem of how to es-
timate the distribution of selection coefficients from compar-
ative data. We have discussed some of the necessary
assumptions and some of the problems related to these
assumptions. We hope this study will encourage popula-
tion geneticists to seek further use of the very large amounts
of available comparative data for addressing the basic
questions in population genetics regarding the fitness
effects of new mutations.
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