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We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, 
BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating 
a new node which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by 
this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance 
estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it 
permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the 
new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during 
the next steps. Moreover, in comparison with NJ’s estimates, these estimates become better and better as the 
algorithm proceeds. BIONJ retains the good properties of NJ-especially its low run time. Computer simulations 
have been performed with 12-taxon model trees to determine BIONJ’s efficiency. When the substitution rates are 
low (maximum pairwise divergence ~0.1 substitutions per site) or when they are constant among lineages, BIONJ 
is only slightly better than NJ. When the substitution rates are higher and vary among lineages, BIONJ clearly has 
better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the 
topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution 
rates (maximum pairwise divergence = 1.0 substitutions per site), the error reduction may even rise above 50%, 
while the probability of finding the correct tree may be augmented by as much as 15%. 

Introduction 

The neighbor-joining (NJ) algorithm of Saitou and 
Nei (1987) is one of the most popular methods for re- 
constructing phylogenetic trees from a matrix of pair- 
wise evolutionary distances. This algorithm follows an 
agglomerative scheme which was first proposed in the 
context of mathematical psychology by Sattath and 
Tversky ( 1977). Agglomerative algorithms iteratively 
pick a pair of taxa, create a new node which represents 
the cluster of these taxa, and reduce the distance matrix 
by replacing both taxa by this node. This cycle is re- 
peated until only three taxa remain. To agglomerate 
pairs of nodes, NJ follows the minimum-evolution (ME) 
principle, which was first suggested by Kidd and Sgar- 
amella-Zonta (1971) and which consists of choosing the 
tree with the smallest sum of branch lengths. Rzhetsky 
and Nei (1993) have shown that this principle has a 
sound theoretical foundation when the lengths are ob- 
tained by the ordinary least-squares method and when 
an unbiased estimate of evolutionary distances is used. 
Under these assumptions, the true tree has the smallest 
expected length among all possible trees. However, this 
result describes an expected (or average) behavior, and 
it is not applicable to every particular data set. More- 
over, due to its greedy, agglomerative approach, NJ does 
not usually find the ME tree, but only a short tree whose 
topology is generally similar to that of the ME tree (Sai- 
tou and Imanishi 1989). This does not preclude good 
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performance, since for any particular data set, the true 
tree itself is usually close to but not identical with the 
ME tree, and numerous computer simulations (Saitou 
and Nei 1987; Nei 1991; Charleston, Hendy, and Penny 
1994; Kuhner and Felsenstein 1994) have shown the 
high relative efficiency of the NJ method in recovering 
the true topology. Following these authors, NJ seems to 
be one of the very best distance methods. It is more 
reliable than the maximum-parsimony approaches, 
which are sometimes asymptotically inconsistent, and it 
is just slightly weaker than the maximum-likelihood 
methods, especially when the molecular clock hypoth- 
esis is clearly violated, probably because it does not take 
adequate account of the model of sequence evolution. 
Moreover, the NJ algorithm, as formulated by Studier 
and Keppler (1988), is efficient from a computational 
point of view and has an O(n3) time complexity, where 
n is the number of taxa. Also, theoretical studies (At- 
teson 1996) have shown that NJ is in some sense as 
efficient as possible. 

Several attempts have been made to improve the 
NJ algorithm by designing methods able to find trees 
very close to or identical with the ME tree. Saitou and 
Imanishi (1989) proposed an exhaustive search method 
which applies when the number of taxa is small (n < 
10). Rzhetsky and Nei (1993) designed various strate- 
gies to search for the ME tree in the neighborhood of 
the NJ tree by conducting local rearrangements. These 
authors also suggested that alternative topologies could 
be generated using a bootstrap procedure (Rzhetsky and 
Nei 1994). Finally, Kumar (1996) designed efficient 
heuristics for searching the tree space in a more or less 
exhaustive manner. These methods have the ability to 
produce a set of short trees, which provide more infor- 
mation than the single NJ tree. Moreover, they usually 
find trees shorter than the NJ tree. But, unfortunately, 
computer simulations (Saitou and Imanishi 1989; Kumar 
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1996) indicate that the ability to recover the true topol- 
ogy is not increased and that NJ may hardly be out- 
stripped in this way. 

This paper proposes a different approach. Instead 
of trying to find trees shorter than NJ trees, we recon- 
sider the basic principle of the NJ algorithm. We show 
that some mathematical formulae employed by NJ may 
be improved by taking into account the features of bi- 
ological data. This new version, which we call BIONJ, 
is basically intended to deal with evolutionary distances 
obtained from aligned sequences. In what follows, we 
first describe this new algorithm, then provide computer 
simulations to demonstrate its efficiency. 

The BIONJ Algorithm 

First, we provide some notation and recall the main 
features of NJ. Then, we show that the formula used by 
NJ to reduce the distance matrix belongs to a larger class 
of admissible formulae, and we propose selecting from 
this class the minimum variance reduction. In order to 
estimate this variance, we use a simple first-order model 
of the sampling variances and covariances of evolution- 
ary distance estimates. This model leads to a simple 
expression of the minimum variance reduction, which is 
fully consistent with the agglomerative approach. These 
elements are combined to form BIONJ. Finally, we pro- 
vide an interpretation of this algorithm, and we compare 
it with NJ from a theoretical perspective. 

Notation and Background 

In what follows, we use the simplified expression 
of NJ from Studier and Keppler (1988), equivalent to 
the original (Gascuel 1994). NJ uses an agglomerative 
approach. At each step, it has a distance matrix (6,) 
where i and j are taxa, or clusters of original taxa ag- 
glomerated during the previous steps. The dimension of 
this matrix will be denoted as r, and we have r = n - 
p, where n is the number of original taxa and p is the 
number of steps already taken. NJ determines the next 
pair to be agglomerated by minimizing a criterion re- 
lated, among other things, to the ordinary least-squares 
length of the tree under construction. In fact, this cri- 
terion admits numerous interpretations, and we have 
shown (Gascuel 1997) that its use is well founded even 
when we abandon the ordinary least-squares framework, 
i.e., when we abandon the assumption of independence 
and equivariance of the 6, estimates and when we place 
ourselves in the generalized least-squares framework. 
Let QXY be the value of this criterion for the taxa x and 
y, and, for the sake of simplicity, let x = 1 and y = 2. 
We then have 

Qi, = (r - 2)Si2 - Si - S,, where S, = i &xi. (1) 
i=l 

Once the pair to be agglomerated has been selected, 
NJ creates a new node which represents the new clus- 
ter’s root, and which is denoted as u in the following. 
For the sake of simplicity, assume that the pair { 1, 2) 
has been selected. Then, NJ estimates the length of the 
branch (1, U) using the (approximate) formula 

61, = ; ( Sl - s2 $2 + - 
) (Y - 2) ’ (2) 

and aZU is obtained in a symmetrical way. Optimal for- 
mulae in the least-squares sense have been proposed by 
Vach (1989) and by Rzhetsky and Nei (1993). They may 
replace formula (2) without modifying the topology of 
the tree under construction (this point is discussed in 
more detail below). Moreover, once the tree structure 
has been constructed, it is possible to obtain a tree with 
only positive (or null) branch lengths using some esti- 
mation procedure based on nonnegative least-squares re- 
gression (Lawson and Hanson 1974, pp. 158-165; Bar- 
thelemy and Guenoche 199 1, pp. 62-66; Swofford et al. 
1996, pp. 445-450). 

Finally, NJ reduces the distance matrix by deleting 
taxa 1 and 2 and by estimating the distance between the 
new taxon u and any taxon i using 

where 6i, and SZU are given by equation (2). 
NJ satisfies a basic requirement for tree reconstruc- 

tion methods: When data are additive (Barthelemy and 
Guenoche 1991), it necessarily finds the unique tree 
which perfectly represents these data. The proof (Saitou 
and Nei 1987; Studier and Keppler 1988; Charleston, 
Hendy, and Penny 1993; Gascuel 1997) is inductive and 

based on the three following points: 

If the distance matrix (6,) is additive, then criterion 
(1) necessarily points out a pair of taxa which are 
neighbors in the tree representing (6$. 
When data are additive, equation (2) is exact. 
When applied to a real pair of neighbors, reduction 
(3) transforms an additive matrix, represented by the 
valued tree T, into an additive matrix represented by 
a subtree of T in which both taxa and the correspond- 
ing branches have simply been deleted, the cluster’s 
root becoming a taxon of the new tree. 

The Minimum Variance Reduction 

In fact, reduction (3) belongs to a large class of 
reduction formulae which all satisfy the third property 
listed above. Any of these formulae guarantees to find 
the correct tree with additive data, when combined with 
equations (1) and (2). These formulae are defined by 

6,i = A6ii + (1 - X)Szi - X61, - (1 - X)62,, (4) 

where I&, and ZZU are obtained from equation (2) or by 
using any formula which is exact with additive data. The 
proof is easy. Let (d,j) be an additive matrix, T the tree 
which represents this matrix, { 1, 2) a pair of neighbors 
in T, and u the root of { 1, 2). When reduction (4) is 
applied to (&) with the pair { 1, 2}, the & (i, j # 1, 2) 
distances remain unchanged, while the new distances Sui 
satisfy 6,i = Xdii + (1 - A)dzi - ASi, - (1 - A)&,. 
Now, let dUi be the distance in T between u and any leaf 
i. Because equation (2) is exact, we have 6i, = di, and 
Z& = dZU. Moreover, because u is the root of { 1, 2}, we 
also have dii = di, + dui and d2i = dTu + duj. When 
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combining these equalities, we obtain 6,i = dui. In other 
words, the new matrix obtained from reduction (4) is 
represented by the subtree of T, in which 1 and 2 have 
been deleted, and the proof is finished. 

Some remarks about definition (4): 

1. The NJ’s reduction (3) corresponds to X = l/2. 
2. h need not be constant and may vary at each step of 

the algorithm (but not depending on taxon i). 
3. It is shown in Gascuel (1994) that when criterion (1) 

is used, adding a constant into the reduction formula 
does not change the topology of the tree under con- 
struction. The last two terms of equation (4) are con- 
stant and only depend on the branch lengths 6i, and 
&. It follows that only the first two (X6ii + (1 - 
X)6,i) play a part in determining the topology. In oth- 
er words, only the sampling noise affecting this sum 
influences the structure of the tree under construction. 
Moreover, this explains why changing the branch 
length estimate (2) does not modify the tree topology. 

When combining these last two remarks, we see 
that it is possible at each step to adjust the value of A 
in order to minimize the sampling variance of the new, 
reduced, matrix. More precisely, we have to minimize 
the variance of the topological part of this matrix defined 
by the sums (X6rj + (1 - A)&). In this way, more 
reliable estimates will be available to select the pairs of 
taxa to be agglomerated during the next steps. Moreover, 
because the process is repeated at each step, these esti- 
mates will become better and better in comparison with 
NJ’s estimates as the algorithm proceeds. 

Let 6, be an estimate of the true evolutionary dis- 
tance dU; let vti be the sampling variance of this estimate, 
and COV~,~~ the covariance of 6, and Bkl. Consider the 
center c of the cluster { 1, 2) defined by the equalities: 
dci = Adli + (1 - A)dzi. This center depends on A, and 
the goal is to determine A, so that the variances v,i of 
the estimates 6,i are as low as possible. Therefore, we 
have to minimize 

= i (A2vii + (1 vA)~v~~ + 2X(1 - A)covli,2i). 
i=3 

This is a second degree polynome, and we find that 

CC v2i - covl,2i) 

‘* = r i=3 

c< vii + v2i - 2COVli,,i) 
i=3 

(5) 

and that 

V~ = A2,V,i + (1 - A*)2V2i + 2X*(1 - A*)COvli,2i. (6) 

This result is very general. To use it, we need to estimate 
the variances and covariances of the Sij estimates. In the 
next section, we shall see that these quantities may be 
approximated in a satisfactory way when the evolution- 
ary distances are obtained from aligned sequences. 

A Simple First-Order Model of the (Co)variances of 
Evolutionary Distance Estimates 

In phylogenetic reconstruction, a basic hypothesis 
is that the evolutionary distances (d$ between taxa are 
additive and that the valued tree T, which represents 
these distances, corresponds to the real evolution of 
taxa. When the evolutionary distances are obtained from 
aligned sequences, they are usually considered propor- 
tional to the substitution rates between sequences. Nu- 
merous models have been proposed to estimate these 
substitution rates from the observed differences between 
sequences (Zharkikh 1994). In the case of Jukes and 
Cantor’s (1969) model, and related ones, good approx- 
imations of the sampling (co)variances of these esti- 
mates are available (Nei and Jin 1989; Bulmer 1991). 
Within a first order, these approximations are 

vu = Id.. and COV~,~~ = 
s rJ 

‘d,,v, (7) s 

where s is the sequence length, u and v represent the 
extremities of the intersection of the paths (i, j) and (k, 
Z) in T, and duv is the evolutionary distance between 
these two ancestral species. When the intersection of (i, 
j) and (k, I) is empty, the covariance of 6, and & is 
null. 

In fact, approximation (7) is valid within a first 
order and near 0 for almost any evolutionary distance 
estimate. Indeed, it is well known (Nei 1991) that when 
the frequency of observed substitutions between se- 
quences is low, all estimates are practically identical and 
equal to this frequency. This holds whatever the model, 
e.g., for the two-parameter model of Kimura (1980) or 
for Jin and Nei’s (1990) gamma estimate or even for 
estimates based on amino-acid sequences (Kimura 
1983); the proof is obtained by considering the variances 
and the covariances of the frequencies of observed sub- 
stitutions. 

Moreover, approximation (7) remains satisfactory 
when departing from 0. It is easily checked with simple 
models such as Jukes and Cantor’s (1969) or Kimura’s 
(1980) that the behavior of vij and do remains qualita- 
tively the same. Let pij be the probability for a substi- 
tution to be observed in any randomly chosen site. Near 
0, the variance vti and the distance d, linearly increase 
as a function of pij. Afterward, both grow rapidly and 
tend to infinity when pij becomes close to some limit 
value, which is equal to 3/4, for example, in Jukes and 
Cantor’s (1969) model. 

Finally, our approach, as that of generalized least- 
squares (Bulmer 1991), does not require exact values 
for variances and covariances. Approximate values are 
sufficient. Consequently, approximation (7) is quite sat- 
isfactory for our purpose and can be applied to almost 
any evolutionary distance estimate obtained from 
aligned sequences. Moreover, it is probably applicable 
to other estimates. However, it does not seem to be con- 
venient for DNA-DNA hybridization data, in which the 
covariances are completely different from that predicted 
by equation (7) (Felsenstein 1987). In this case, another 
model is needed. 
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Results Obtained with this Model 

As we consider model (7), which we shall now do, 
we find ourselves in a very comfortable situation, for: 

1. The variances (vu) may be estimated by @,j/s). 
2. The variances (vu) are tree-like, as are the evolution- 

ary distances (di,). It follows that the covariances, 
which are path lengths in the variance tree, may be 
computed from the variances; thus, we have 

1 
COV1Qj = ,(Vli + V2i - VIZ). (8) 

Therefore, we have estimates for the variances and 
the covariances of the distances between original taxa. 
These allow the algorithm to be initialized and the first 
agglomeration step to be taken. Let us now see what 
happens during the next steps, when the (au) matrix re- 
fers not only to original taxa, but also to clusters of these 
taxa. When-replacing the covariances by their values (8) 
in expressions (5) and (6), we find that 

r 

CC 
A, = ; + i=3 

v2i - vii) 

w - m12 
(9) 

and that 

Vz = X*Vli + (1 - X*)V2i - X*(1 - X*)V12* (10) 

First, as a consequence of the triangle inequalities 
-VI2 5 V2i - vii 5 v129 we have that A, necessarily 
belongs to [0, 11. Moreover, formula (10) provides the 
new variances, introduced by the first agglomeration. 
Let US now consider the new covariances COV,i,ji, where 
j # 1, 2, i. We know from equation (8) that 

and 

COVliji = $(Y,i + Vji - Vlj) 

COV2iji = i(V2i + Vji - V2j). 

Using the center definition, equality (lo), and both 
of the above equations, we find that 

COV,i,ji = COV(X*G,i + (1 - X*)62i,6ji) 

= A*COV,i,ji + (1 - A+)COV,i,ji 

= ;(A,v,~ + (1 - A*)vZ~ + Vii - A*Vu 

- (1 - A*)v,) 

= i(Va + Vji -V$). 

In other words, the covariances introduced by the 
first agglomeration can be computed from the variances 
using equation (8), as can the initial covariances. It fol- 
lows that formulae (9) and (10) can be used in the sec- 
ond step. By induction, we obtain that at every step: 
formula (8) is valid; the explicit values of the covari- 
antes are useless; and it is possible to directly use for- 

Input the distance matrix Pv) of size nXn ; 
Initialize the number of taxa: rtn ; 

(a) Initialize the variance matrix: (v$+(%) ; 
While the number of taxa r is greater than 3: 

(b) { Compute the sums S, ; 
(c) Find the pair to be agglomerated by minimizing (1) ; 

Compute the branch-lengths using (2) ; 

(d) Determine h. using (9) and the constraint h. c[O,l] ; 
Apply Reduction (4) to (8il) ; 

(e) Apply Reduction (10) to (vu) ; 
Decrease the number of taxa: rtr- 1 ) 

Compute the last three branch-lengths using (2) ; 
Output the tree found. 

FIG. l.-The BIONJ algorithm. 

mulae (9) and (10). This property is valid whatever the 
value of A,. Using estimated values for the variances 
instead of their true values makes the computation of 
A, suboptimal, but does not invalidate this property. 
However, according to our previous remark, this esti- 
mated value has to be maintained in [0, 11. Let us also 
underline that we have not assumed that the taxa which 
are agglomerated are effectively neighbors in the true 
tree. In short, computations (9) and (10) remain consis- 
tent throughout the agglomerative procedure, even when 
A, is imperfectly estimated and when erroneous pairs of 
taxa have been selected. The simplicity of these com- 
putations comes from our first-order model (7), in which 
variances are tree-like. With a higher order model (e.g., 
Bulmer 1991) things would likely be more complicated. 

Equation (10) is a reduction formula identical to 
reduction (4) except for the constant term. Therefore, to 
compute the estimated values of variances, a very sim- 
ple solution consists of iteratively reducing by equation 
(10) a matrix whose initial values are (Q/s). In fact, the 
variance matrix (vii) may be initialized as (t,), because 
the term l/s does not play any part in equation (9). 

The Algorithm 

The algorithm is summarized in figure 1. Basically, 
it differs from NJ in lines (a), (d) and (e). These lines 
introduce an additional computational cost in terms of 
time and space. However, this cost is very low. Indeed, 
(a) has an O(n2) time complexity, while (d) and (e) re- 
quire O(r) time at each step and, therefore, they too have 
a total cost in O(n2). In fact, none of these lines intro- 
duces a time complexity comparable to that of lines (d) 
and (e), which are already in NJ and whose cost is 0(n3). 
Using identical implementation for both algorithms (Al- 
legro Common Lisp 3.0 for Windows, and a Pentium 
120 PC), NJ needs 0.027 s with n = 12, while BIONJ 
needs 0.033 s. With n = 36, the run times become, re- 
spectively, 0.64 and 0.68 s. Therefore, there is no prac- 
tical difference between NJ’s and BIONJ’s run time. 
Concerning memory space, BIONJ has to store the vari- 
ance matrix (vij) and thus needs twice as much memory 
space as does NJ. However, this has no practical con- 
sequence with modern computers. A simple solution 
consists of using a unique matrix, one half occupied by 
the distances ($) and the other half by the variances 
(vij). 
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tion 
FIG. 2.--u, The true tree T. b, The distance tree after 
(4). c, The variance tree after one reduction (10). 

one reduc- 

Interpretation and Theoretical Comparison Between 
NJ and BIONJ 

In order to simplify the analysis, let us assume that 
BIONJ is fed with the true evolutionary distances in- 
stead of their estimated values. Under this assumption, 
both distance and variance matrices are initially identi- 
cal, and both may be represented by the true tree T. 
Once the first agglomeration has been achieved, the ma- 
trices differ. As has already been explained, the distance 
matrix may be represented by a subtree T’ of T, which 
is obtained by deleting taxa 1 and 2. Reduction (lo), 
which is identical to reduction (4) except for the con- 
stant term, also preserves the shape of T, but modifies 
the length of the branch attached to c, the center of the 
cluster { 1, 2). In fact, c is farther from the other taxa 
than is the cluster’s root u (fig. 2). Using equations (4), 
(9), and (lo), the expression of the additional length v,, 
is given as 

V cl4 = A2,dl, + (1 - X*12&, 

with 

(11) 

(12) 

During the next steps, things basically remain the 
same. Reduction (4) deletes pairs of neighbors, while 
reduction (10) replaces these neighbors by their center 
c, which is at some positive distance from their root u. 
These increments accumulate in some sense through for- 
mulae (9) and (lo), and the clusters’ centers become 
farther and farther from their root. These additional 
lengths, together with the rest of the tree, represent the 
variances of the reduced distance matrix. The situation 
therefore is all the more favorable when these incre- 
ments are low. Let us consider equations (11) and (12) 
and examine the extreme cases: 

The best possible situation brings a null increment 
(v,ll = 0). In this case, one of the branches dl, or d2u 
is null, and we have h, = 1, respectively A, = 0. If 
dl, = 0, then 1 and u are identical, and reduction 
(10) consists of choosing for the cluster’s center its 
root u (= 1). The distances from taxon 2 are not taken 
into account in reduction (4), which may be easily 
interpreted, since we already have the data for an an- 
cestor of 2 (1 = u). The second case is symmetrical. 
The worst situation corresponds to dl, = d2u = d12/2. 
Here, we have v,, = d12/4 and A, = l/2. The reduc- 
tion consists of the normal average between two vari- 

BIONJ: An Improved Version of the NJ Algorithm 689 

ables which are nonindependent but have the same 
variance: d12/2 + dui. Once the reduction has been 
achieved, the variance dui attached to the dependent 
part of the variables remains the same, while the rest 
is divided by 2, as expected. 

In the latter case, the minimum variance reduction 
coincides with NJ’s reduction (3). NJ is as good as pos- 
sible, and the two algorithms are identical. In fact when 
systematically using A, = l/2, we always obtain the 
same increment: v,, = d12/4, whatever the branch 
lengths dl, and d2u. It follows that in the first case, re- 
duction (3) induces a variance much higher than the 
minimum variance reduction, since the increment is null 
for the latter. Therefore, it appears that, in contrast to 
NJ, BIONJ uses the fact that the neighboring branches 
do not necessarily have the same length, and that the 
shorter one induces a lower variance. This difference of 
branch length in the variance tree may occur for two 
reasons: either (the first situation, above) because both 
branches correspond to species which have evolved at 
different speeds or because one of the branches results 
from the agglomeration of numerous taxa, which reduc- 
es the variance, while the other does not. The first case 
is in contradiction with the molecular-clock hypothesis 
and will be the source of the most important differences 
between NJ and BIONJ; however, the second case may 
occur even when this hypothesis is satisfied. Although 
we have achieved a somewhat simplified analysis, the 
main difference between the two algorithms has been 
indicated. 

Let us now examine the real situation where the 
algorithms are fed with the estimated values of the evo- 
lutionary distances, and not with their true values. Two 
cases can occur. In the first case, these estimated values 
are satisfactory, which basically means that they are not 
excessively biased. In this case, the value (9) of A, is 
better than the rough NJ approximation A, = l/2, and 
BIONJ performs better than NJ. In the second case, 
these estimated values are inadequate and highly biased. 
The estimated value (9) of A, may then become worse 
than A, = l/2, and NJ is better. Simulations presented 
in the next section show that such a situation is rare but 
may occur when the evolutionary distance estimate is 
very badly selected. 

Simulation Results 

Six model trees (fig. 3) were considered, each con- 
sisting of 12 taxa. The first two (A, B) satisfy the mo- 
lecular-clock hypothesis, while the other four (C, D, E, 
F) present varying substitution rates among lineages. 
Trees A, B, C, and D were taken from Kumar (1996), 
and each consists of two copies of the same six-taxon 
tree, previously used by Saitou and Imanishi (1989) for 
similar purposes. Trees E and F are identical to trees C 
and D, respectively, except that the short external 
branches with length b have been replaced by longer 
branches having length 3b. Therefore, trees E and F may 
be seen as intermediate between the constant-rate (A, B) 
and the highly-varying-rate (C, D) trees. Simulations re- 
ported by Nei (199 I), which relate to trees very similar 
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FIG. 3.-The model trees used for simulations. Each interior 
branch is one unit long (a for constant and b for variable-rate trees) 
and the lengths of external branches are given in multiples of a or b. 
Trees E and F are intermediate between the constant (A, B) and the 
highly-varying-rate (C, D) trees. 

to A, B, C, and D, have shown that NJ is at least as 
good as all other methods with constant-rate trees, while 
with varying-rate trees, NJ is less efficient than the max- 
imum-likelihood methods but remains comparable to or 
better than other methods. 

The Kimura (1980) two-parameter model of se- 
quence evolution was used with a transition/transversion 
ratio of 2. Each site evolved independently, starting from 
a random nucleotide sampled equiprobably from A, G, 
C, and T and simulating change according to the Mar- 
kov chain specified by the Kimura model, with the sub- 
stitution (transition + transversion) rate given by the 
length of that branch in the tree. Changes in different 
branches were independent, starting from the nucleotide 
that was achieved in the common ancestor of the 
branches. Evolutionary distances were computed using 
the standard Kimura (1980) estimate, except for the 
high/low per site condition, where we also used the two- 
parameter gamma-estimate (a = 1) of Jin and Nei 
(1990). Sequence lengths were equal to 300 or 600 sites, 
and four different conditions of evolution were consid- 
ered: 

Low substitution rates, which corresponded to a max- 
imum pairwise divergence of about 0.1 substitutions 
per site and were obtained with a = 0.0055 and b = 
0.004. 
High substitution rates, which corresponded to a 
maximum pairwise divergence of about 1.0 substi- 
tutions per site and were obtained with a = 0.055 
and b = 0.04. 
Middle substitution rates, which seem more realistic 
than either of the previous extreme conditions and 
were obtained with a = 0.0275 and b = 0.02 (max- 
imum pairwise divergence ~0.5). 

length, and each model tree, 500 replications were per- 
formed. For each replicate data set, two criteria were 
measured to estimate and compare the performance of 
both algorithms: 

High/low per site substitution rates, along the lines 
of Kuhner and Felsenstein (1994). Within this con- 
dition, half of the sites evolved slowly in the sense 
previously defined (a = 0.0055 and b = 0.004), 
while the other half evolved quickly (a = 0.055 and 
b = 0.04). Then, the maximum pairwise divergence 
was about 0.55. This condition of evolution contra- 
dicts the usual assumption, which is made in the Ki- 
mura (1980) estimate, that all sites evolve identically. 
To a certain extent, the Jin and Nei (1990) two-pa- 
rameter gamma estimate is more appropriate than 
that of Kimura, since it relaxes this hypothesis. How- 
ever, the gamma distribution is clearly different from 
the bimodal distribution which was realized here. 
Therefore, this condition of evolution provides a 
view of the method’s robustness with the Kimura es- 
timate as well as with that of Jin and Nei, the per- 
turbation being, however, stronger in the first case. 

For each condition of evolution, each sequence 

The minimum-evolution (ME) criterion, using opti- 
mal estimates of branch lengths which were obtained 
by a method similar to that of Rzhetsky and Nei 
(1993). To evaluate the results, this criterion was also 
applied to the true tree T by fitting its branches with 
the matrix (Q) just as was done for the estimated 
trees. 
The Robinson and Foulds (198 1) distance between 
the true tree and the estimated tree (RF). This topo- 
logical distance is equal to the number of internal 
branches (or bipartitions) that exist in one tree but 
not in the other. For trees of 12 taxa it varies between 
0 (identical topologies) and 18. Since both the true 
and the estimated trees are fully resolved, this crite- 
rion takes only even values. Thus, we display in the 
tables half of this criterion (i.e., RF/2), which can 
readily be interpreted as the number of incorrect 
branches in the estimated tree. 

Simulations were performed on a PC, and the soft- 
ware (written in Allegro Common Lisp 3.0 for Win- 
dows) is available on request. The results are given in 
Tables l-6. The main point, already suggested by the 
above theoretical analysis, is that BIONJ is much better 
than NJ with highly-varying-rate trees (C, D), while for 
constant-rate trees (A, B) the difference is slight. For 
example, with trees C and D the RF error reduction is 
on the average 25%, while with trees A and B it is only 
4%. Moreover, the probability of exactly finding the true 
tree is augmented up to 16% for C and D, while the 
gain is between - 1% and 4% for A and B. In fact, when 
looking at the values of h,, we observe that they are 
usually very close to 0.5 in the case of trees A and B, 
which implies that BIONJ and NJ are almost identical, 
while they are much more variable with trees C and D. 
For example, we have observed the sequence (0.5, 0.5, 
0.6, 0.6, 0.5, 0.5, 0.6, 0.6, 0.5) for one particular run of 
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Table 1 
Results Obtained with Model Tree A 

No. of Sites %ME<,> RF %RF=O %RF<,> 

Low. . . . . . . . . . . . 300 NJ 71 6 1.47 23 -- 
BIONJ 73 5 1.43 (3) 22 10 6 

600 NJ 29 6 0.43 65 -- 
BIONJ 32 3 0.43 (0) 64 3 4 

Middle. . . . . . . . . . 300 NJ 45 12 0.76 44 -- 
BIONJ 47 6 0.69 (8) 48 10 5 

600 NJ 14 4 0.20 82 -- 
BIONJ 14 1 0.17 (14) 85 4 2 

High/low. . . . . . . . 300 NJ 73 10 1.53 17 -- 
BIONJ 78 4 1.46 (4) 18 16 9 

600 NJ 32 11 0.53 57 -- 
BIONJ 37 3 0.48 (9) 60 10 6 

High/low 
Jin and Nei 
estimate . . . . . . . 300 NJ 77 10 1.81 13 -- 

BIONJ 82 6 1.75 (4) 13 15 10 - 
’ 600 NJ 39 12 0.70 49 -- 

BIONJ 44 4 0.64 (9) 51 12 7 

High . . . . . . . . . . . 300 NJ 67 10 1.36 23 -- 
BIONJ 73 5 1.30 (4) 22 15 10 

600 NJ 30 11 0.47 59 -- 
BIONJ 34 3 0.43 (8) 63 11 7 

NOTE.-%ME<,> provides the percentages of times where the estimated tree T is shorter, respectively longer, than 
the true tree T, i.e., ME(T) < ME(T), respectively ME@ > ME(T); RF is half of the Robinson and Foulds distance 
between T and T, and the number in parentheses is the percentage relative error reduction, i.e., 100(RF(Tm, T) - RF(Tatom, 
T))/RF(T’,,, T); %RF = 0 is the percentage of times where the estimated and the true trees are identical; %RF<,> provides 
the percentages of times where BIONJ’s topological accuracy is better, respectively worse, than NJ’s, i.e., RF(TatoNJ, T) 

< RF@‘,,, T), respectively RF(TrnONJ, T) > RF(TNJ, T), and these numbers are underlined when their difference is 
statistically significant (1 - a 2 95%). 

Table 2 
Results Obtained with Model Tree B 

No. of Sites %ME<,> RF %RF=O %RF<,> 

Low. . . . . . . . . . . . 300 

600 

Middle. . . . . . . . . . 300 

600 

High/low. . . . . . . . 300 

600 

High/low 
Jin and Nei 
estimate . . . . . . . 300 

600 

High . . . . . . . . . . . 300 

600 

NJ 69 6 
BIONJ 70 6 

NJ 34 5 
BIONJ 35 4 

NJ 52 11 
BIONJ 54 7 

NJ 15 5 
BIONJ 16 4 

NJ 72 13 
BIONJ 76 10 

NJ 41 9 
BIONJ 43 6 

NJ 79 8 1.97 13 -- 
BIONJ 81 7 1.96 (1) 12 9 9 

NJ 47 12 0.86 41 -- 
BIONJ 49 10 0.84 (3) 41 6 4 

NJ 69 15 1.64 16 -- 
BIONJ 71 11 1.58 (4) 18 14 9 

NJ 33 11 0.56 56 -- 
BIONJ 34 9 0.55 (1) 57 6 5 

1.40 
1.38 (1) 
0.50 
0.49 (1) 

0.92 
0.86 (7) 

0.21 
0.20 (1) 

1.81 
1.80 (0) 

0.70 
0.68 (3) 

24 -- 
24 8 6 

60 -- 
61 3 2 

37 
39 

80 
80 

-- 
9 4 

-- 
2 1 

15 -- 
14 10 11 

50 -- 
52 6 4 

NOTE.-see note to table 1. 
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Table 3 
Results Obtained with Model Tree C 

No. of Sites %ME<,> RF %RF = 0 %RF<,> 

Low. . . . . . . . . . . . 300 NJ 79 7 1.99 
1.94 (2) 
0.65 
0.61 (6) 

0.57 
0.42 (26) 

0.07 
0.04 (46) 

1.99 
1.88 (6) 
0.98 
0.88 (10) 

14 
15 

56 
56 

-- 
19 14 
-- 

9 6 

60 -- 
69 18 6 
94 -- 
97 4 1 
16 -- 
20 26 17 
35 -- 
42 18 10 

BIONJ 

NJ 
BIONJ 

NJ 
BIONJ 

NJ 
BIONJ 

NJ 
BIONJ 

NJ 
BIONJ 

74 11 

37 7 
36 8 

32 8 
23 8 

4 2 
3 1 

69 15 
63 16 

48 17 
39 19 

Middle. . . . . . 

High/low. . . . . . . . 

High/low 
Jin and Nei 
estimate . . . 

High . . . . . . . . . . . 

300 

600 

300 

600 

300 

600 

300 

600 

NJ 50 14 
BIONJ 39 14 

NJ 16 8 
BIONJ 10 6 

NJ 29 12 
BIONJ 18 7 

NJ 5 2 
BIONJ 1 1 

1.18 
0.92 (22) 

0.31 
0.19 (39) 

0.59 
0.37 (37) 

0.08 
0.03 (63) 

36 -- 
47 26 8 

76 -- 
85 14 3 

59 -- 
75 24 5 
93 -- 
98 6 1 

Nom-See note to table 1. 

BIONJ with tree B, and the sequence (0.1, 0.2, 0.2, 0.8, mented up to 11%. Therefore, it appears that BIONJ 
0.4, 0.8, 0.1, 0.4, 0.7) for another run with tree D. How- preserves NJ’s efficiency with constant-rate trees, while 
ever, the (estimated) values of A, rarely go outside [0, with varying-rate trees, it at least partially fills the gap, 
11. As expected, the results with moderately-varying- reported by Nei (199 1) and others, between NJ and the 
rate trees (E, F) are intermediate. For example, the RF maximum-likelihood methods. 
error reduction for both trees is on the average 14%, Another noticeable result is that the difference be- 
while the probability of finding the correct tree is aug- tween the algorithms is larger when the substitution 

Table 4 
Results Obtained with Model Tree D 

No. of Sites %ME<,> RF %RF=O %RF<,> 

NJ 79 7 
BIONJ 73 13 

NJ 39 6 
BIONJ 33 8 

NJ 26 13 
BIONJ 19 12 

NJ 4 4 
BIONJ 3 1 

NJ 60 18 
BIONJI 49 24 

NJ 24 15 
BIONJ 18 24 

2.01 
2.02 (-1) 

0.65 
0.57 (11) 

0.56 
0.43 (23) 

0.08 
0.04 (56) 

1.84 
1.74 (5) 

0.64 
0.66 (-2) 

14 
13 

54 
59 

-- 
14 15 
-- 
11 4 

61 -- 
69 18 7 
92 -- 
97 6 1 

21 -- 
27 26 19 

61 -- 
58 12 16 

Low. . . . . . . . . . . . 300 

600 

Middle. . . . . . . . . . 300 

600 

High/low. . . . . . . . 300 

600 

High/low 
Jin and Nei 
estimate . . . . . . . 300 NJ 57 13 

BIONJ 44 15 

NJ 18 7 
BIONJ 9 5 

NJ 34 13 
BIONJ 23 8 

NJ 7 4 
BIONJ 4 1 

1.23 
0.99 (20) 

0.32 
0.19 (40) 

0.77 
0.49 (36) 
0.13 
0.07 (51) 

30 
41 

75 
86 

-- 
30 12 
-- 
15 3 

53 -- 
69 27 4 

89 -- 
95 7 1 

600 

High . . . . . . . . . . . 300 

600 

Nom.-See note to table 1. 
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Table 5 

BIONJ: An Improved Version of the NJ Algorithm 693 

Results Obtained with Model Tree E 

No. of Sites %ME<,> RF %RF=O %RF<,> 

Middle. . . . . . . . . 300 

High/low. . . . . . . 300 

High/low 
Jin and Nei 
estimate . . . . . . 

High . . . . . . . . . . 300 

600 

600 

600 

300 

600 

600 

BIONJ 

NJ 
BIONJ 

81 7 

41 9 
41 8 

2.14 13 
2.07 (3) 12 

0.70 50 
0.70 (1) 52 

NJ 39 15 0.78 46 
BIONJ 35 10 0.62 (21) 55 

NJ 8 4 0.14 87 
BIONJ 8 3 0.12 (12) 89 

NJ 72 12 1.99 15 -- 

BIONJ 72 10 1.84 (8) 18 24 12 

NJ 46 11 0.84 42 -- 
BIONJ 42 11 0.78 (7) 47 12 8 

NJ 62 14 1.65 23 -- 
BIONJ 60 12 1.54 (6) 28 23 14 

NJ 28 13 0.53 59 -- 
BIONJ 25 7 0.41 (23) 68 16 4 

NJ 43 17 
BIONJ 38 11 

NJ 12 7 
BIONJ 11 3 

Low. . . . . . . . . . . . 300 NJ 81 6 

0.16 (27) 86 8 2 

0.99 
0.80 (20) 

0.22 

40 
50 

82 

-- 
14 8 
-- 

7 6 

-- 
20 8 
-- 

4 2 

-- 
23 9 
-- 

NOTE.-see note to table 1. 

rates increase. The most important gaps are observed practically equal to the number of realized substitutions, 
with high substitution rates, while with low substitution therefore, the distance matrix (S& is very close to a tree 
rates, the results of the two algorithms are almost iden- distance. The sampling variance affects the branch 
tical. With middle rates, results are intermediate. This lengths of this tree (the number of realized substitutions 
may be understood by realizing that with low substitu- may be quite different from the expected number of sub- 
tion rates, there are very few parallel or back substitu- stitutions) but not its topology. As observed by Kumar 
tions. With the number of observed substitutions being (1996), in this case, the main difficulty the algorithms 

Table 6 
Results Obtained with Model Tree F 

No. of Sites %ME<,> RF %RF=O %RF<,> 

Low. . . . . . . . . . . . 

Middle. . . . . . . . . . 

HigMow. . . . . . . . 300 

HigMow 
Jin and Nei 
estimate . . . . . . . 

High . . . . . . . . . . . 300 

300 

600 

300 

600 

600 

300 

600 

600 

NJ 80 6 
BIONJ 80 6 

NJ 41 8 
BIONJ 39 8 

NJ 40 12 
BIONJ 39 8 

NJ 10 5 
BIONJ 7 3 

NJ 72 12 
BIONJ 72 10 

NJ 34 17 
BIONJ 30 16 

NJ 69 14 
BIONJ 67 11 

NJ 33 13 
BIONJ 29 8 

NJ 49 14 
BIONJ 41 13 

NJ 14 7 
BIONJ 9 3 

2.12 
2.10 (1) 

0.70 
0.68 (2) 

0.81 
0.72 (11) 
0.16 
0.10 (35) 

1.92 
1.83 (5) 
0.72 
0.66 (8) 

1.75 
1.61 (8) 

0.64 
0.49 (23) 

1.04 
0.83 (20) 

0.25 
0.14 (44) 

14 
14 

51 
54 

-- 
12 11 
-- 
10 9 

48 -- 
53 15 8 

86 -- 
90 7 1 

16 -- 
19 21 14 

49 -- 
54 16 10 

17 -- 
22 24 13 

54 -- 
64 16 4 

37 -- 
46 23 8 

79 -- 
88 11 1 
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are faced with is that some branches are not supported 
by any substitution. Clearly, BIONJ may not solve this 
difficulty any better than does NJ. However, this phe- 
nomenon is reduced as the sequence length increases or 
as the substitution rates become higher. 

With the high/low per site condition, the perfor- 
mance of both algorithms decreases, as expected. With 
varying-rate trees (C, D, E, F) the results are clearly 
better when using the Jin and Nei (1990) gamma-esti- 
mate than when using the Kimura estimate; however, 
the inverse holds, to a certain extent, with constant-rate 
trees (A, B). When using the Kimura estimate, the gain 
obtained by BIONJ is slight, and BIONJ is even less 
efficient than NJ in one case (tree D, 600 sites). This 
illustrates that BIONJ may sometimes be less robust 
than NJ. However, this is probably rare, since BIONJ is 
better than NJ in all other cases. Moreover, the high/low 
per site condition strongly violates the assumptions of 
the Kimura estimate. When using the Jin and Nei (1990) 
gamma-estimate, which is imperfect but more appropri- 
ate than that of Kimura, the gain obtained by BIONJ 
becomes high again, and comparable with that obtained 
with the middle condition. From another point of view, 
this result demonstrates that BIONJ is not dedicated to 
the Kimura estimate, and that it is profitable to use it 
once the evolutionary distance estimate is sufficiently 
well adapted to the data. 

The sequence length has an influence on the type 
of gain which may be expected from BIONJ. The ab- 
solute error reduction is higher with short sequences 
than with long sequences, but the contrary holds for the 
relative error reduction. The probability that the two 
methods will differ is also much higher with short se- 
quences than with long sequences; however, with long 
sequences, the probability that NJ will be better than 
BIONJ becomes very low, close to 0. The tree topology 
also has a certain influence. Few differences are ob- 
served between trees C and D, respectively E and F, 
because their topologies are close. However, the gain is 
much higher with tree A than with tree B, the topologies 
of which are very different. Good results obtained with 
tree A derive from the fact that with such a topology 
we frequently have to agglomerate a single original tax- 
on with a cluster which already contains numerous taxa; 
such a situation induces branches with different lengths 
in the variance tree and is advantageous to BIONJ (see 
above). 

BIONJ finds trees which are not shorter than NJ’s 
in the sense of the ME criterion. Specifically, it seems 
that BIONJ trees are just a little shorter with constant- 
rate trees but longer with varying-rate trees-where 
BIONJ outperforms NJ. Moreover, it appears that trees 
found by both NJ and BIONJ are more often too short 
(i.e., shorter than the true tree) than too long. This ex- 
plains why searching for trees shorter than NJ trees may 
not increase the topological accuracy. 

Conclusion 

We have presented an improved version of NJ 
which is well adapted to cases where evolutionary dis- 

tances are obtained from aligned sequences. This new 
algorithm, BIONJ, uses a simple model of the sampling 
noise of evolutionary distances. Thus, it takes into ac- 
count the fact that high evolutionary distances present a 
higher variance than do short distances. The covariances 
of- evolutionary distances are also taken into account. 
Theoretical reasons, as well as the computer simulations 
we have performed, show that BIONJ has an expected 
topological accuracy greater than (or equal to) that of 
NJ, provided our sampling noise model is satisfactory 
and a reasonable estimate of the evolutionary distance 
has been selected. BIONJ is a very simple algorithm 
which requires about the same computational time as 
does NJ. Simulation results show that BIONJ is only 
slightly better than NJ when the substitution rates are 
low or when they are constant among lineages. When 
the substitution rates are higher and vary among lin- 
eages, BIONJ clearly has a better topological accuracy 
than NJ. Then, the error reduction may rise above 50%, 
and the probability of finding the correct tree may be 
augmented by more than 15%. 

Consequently, it seems to us that BIONJ ought to 
be widely used when one has evolutionary distances 
which satisfy the algorithm’s hypotheses (eq. 7). Nev- 
ertheless, interesting and important work remains to be 
done concerning BIONJ. This includes systematic com- 
parison with other approaches under various conditions 
of evolution. It is expected that branch length estimates 
could be obtained which would be more consistent with 
the rest of the approach. Also, further exploration con- 
cerning the relationships of this theory with that of gen- 
eralized least-squares is envisaged. - 
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