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Quartet puzzling (QP), a heuristic tree search pro- 
cedure for maximum-likelihood trees, has recently been 
introduced (Strimmer and von Haeseler 1996). This 
method uses maximum-likelihood criteria for quartets of 
taxa which are then combined to form trees based on 
larger numbers of taxa. Thus, QP can be practically ap- 
plied to data sets comprising a much greater number of 
taxa than can other search algorithms such as stepwise 
addition and subsequent branch swapping as imple- 
mented, e.g., in DNAML (Felsenstein 1993). However, 
its ability to reconstruct the true tree is less than that of 
DNAML (Strimmer and von Haeseler 1996). Here, we 
show that the assignment of penalties in the puzzling 
step of the QP algorithm is a special case of a more 
general Bayesian weighting scheme for quartet topolo- 
gies. Application of this general framework leads to an 
improvement in the efficiency of QP at recovering the 
true tree as well as to better theoretical understanding 
of the method itself. On average, the accuracy of QP 
increases by 10% over all cases studied, without com- 
promising speed or requiring more computer memory. 

Consider the three different fully-bifurcating tree 
topologies Q,, Q2, and Q3 for four taxa (fig. 1). Denote 
by ml, m2, and m3 their corresponding maximum-like- 
lihood (not log-likelihood) values. Note that ml + m2 
+ m3 << 1. Evaluation via Bayes’ theorem of the three 
tree topologies given uniform prior information leads to 
posterior probabilities 

mi 
Pi = m, + m2 + m3 

for each quartet Qi (Lindgren 1976, Kishino and Hase- 
gawa 1989), with p1 + p2 + p3 = 1. From an inferential 
point of view it is natural to use these Bayesi an proba- 
bilities pi as weights Wi for each quartet in the tree- 
building process. 

If we investigate the puzzling step of the original QP 
algorithm more closely we see that for each quartet a pen- 
alty of 1 is assigned for the quartet topology that shows 
the highest maximum-likelihood value and a penalty of 0 
is assigned for the other two topologies. Thus, an implicit 
weighting of quartet topologies occurs using weights-w,, 
= l,w,*,, = 0. In fact, when the probabilities pi are com- 
puted for real data sets, most of the quartets show posterior 
probabilities pmax = 1, pother = 0, justifying the ad hoc QP 
procedure. However, if sequences are short or very closely 
related and if therefore not all quartet trees can be conn- 
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dently resolved, the Bayesian posteriors pi may deviate 
substantially from this simple picture. It is desirable to 
incorporate the additional information provided by the 
probabilities pi into the QP algorithm to improve the tree 
reconstruction process in these cases. 

The most straightforward implementation of this idea 
is to use for each quartet of taxa (A, B, C, D) the Bayesian 
probabilities pi as weights wi. For each of the three possible 
topologies Q, and not only for the one showing the highest 
maximum likelihood, we assign a penalty of wi along the 
corresponding branches (Strimmer and von Haeseler 
1996). We call this approach QP using continuous weights, 
in contrast to the originally proposed QP where implicitly 
three discrete weights are applied. However, this new pro- 
cedure has drawbacks. First, three times more assignments, 
and floating-point instead of integer calculations, are nec- 
essary and, consequently, the tree reconstruction process 
is slowed down significantly. Second, much more memory 
space is needed to store all the different weights Wi. This 
problem prohibits the use of this method for larger num- 
bers of taxa. 

We have therefore investigated another natural exten- 
sion of the original QP procedure for assigning penalties. 
It is well known that there are three different unrooted 
binary trees connecting four taxa. However, if we also con- 
sider the completely unresolved star tree and the three par- 
tially resolved quartet trees then we count in total seven 
different topologies (Eigen, Winkler-Oswatitsch, and Dress 
1988). To each of the seven trees corresponds a set of 
discrete weights Wi (fig. l), according to which bifurcating 
trees may be obtained by resolving the partially resolved 
networks. When quartets are evaluated in the maximum- 
likelihood step of the QP algorithm we choose among 
these seven permitted sets of weights by selecting that 
which minimizes the least-squares distance 

d = C (pi - Wi)2. 
i=l 

(2) 

Thus, we approximate the Bayesian probabilities pi by 
one of the seven sets of discrete weights Wi. This pro- 
cedure has several advantages. Not only can all neces- 
sary storage now be done without demanding additional 
computer memory, but it also makes it possible to avoid 
floating-point calculations when QP penalties are dis- 
tributed over branches while still applying fractional 
weights. If we have decided on one of the three com- 
pletely resolved quartet trees Qi (fig. 1) we assign a pen- 
alty of 1 along the corresponding branches as usual. 
However, if we have ended up in one of the four non- 
bifurcating quartets we assign a penalty of 1 for pre- 
cisely one randomly chosen bifurcating quartet topology 
quartet that is compatible with it. In this way we effec- 
tively apply weights Wi, as an average over all puzzling 
steps performed, but still use only integer calculation. 
We call this approach QP using discrete weights. 
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FIG. l.-The seven possible binary and nonbinary trees for a 
quartet of taxa (A, B, C, D), and the corresponding discrete weights 
(IV,, w2, wg). The Qi are the three completely resolved quartet trees. 

To evaluate the accuracies of the two modifications 
of the QP algorithm, we have repeated the computer 
simulations used in the original paper (Strimmer and 
von Haeseler 1996). We adopt that setup and those con- 
ventions. For several evolutionary scenarios, the perfor- 
mance of QP at reconstructing the correct tree was stud- 
ied. Our results comparing the original QP (A), QP us- 
ing discrete weights (B), and QP using continous 
weights (C) are shown in Table 1 for the clock-like 
eight-taxon tree T,, and in Table 2 for the non-clock- 
like eight-taxon tree T2. In all cases examined methods 
B and C show a significant increase in efficiency over 
method A. This is very pronounced for high substitution 
rates. However, the differences of algorithms B and C 
are only very small. Procedure C is slightly better than 
method B except for high substitution rates on tree T,, 
where B performs better. This is remarkable, as method 
B is computationally faster and needs less computer 
memory than method C. We think that this is because 

Table 1 
Percentage of Correctly Recovered Trees T1 if the 
Original QP Algorithm (A), QP Using Discrete Weights 
(B), and QP Using Continuous Weights (C) Are Applied 

SEQUENCE TREE T, 

EVOLUTION JC” Kmb 

1 a/b A B C A B C 

500 . . 0.01/0.07 71.5 79.6 81.2 57.8 69.8 74.7 
0.02/o. 19 54.4 69.7 66.3 42.5 63.3 58.6 
0.03/0.42 11.3 28.5 20.5 14.2 33.4 21.4 

1,000.. 0.01/0.07 93.8 93.5 96.9 87.0 89.2 92.3 
0.02/0.19 86.0 91.5 93.5 75.3 85.0 86.1 
0.03/0.42 36.6 52.9 42.8 35.6 57.2 48.6 

Nom.-Terminology and setup follow Strimmer and von Haeseler (1996). 
Sequence length is denoted by 1, branch lengths by a and b, and the expected 
transition-transversion ratio by Z 

a Jukes-Cantor (T = 45). 
b Kimura (T = 4). 
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Table 2 
Percentage of Correctly Recovered Trees Tz if the 
Original QP Algorithm (A), QP Using Discrete Weights 
(B), and QP Using Continous Weights (C) are Applied 

SEQUENCE 
TREE T2 

EVOLUTION JC’ Kmb 

1 a/b A B C A B C 

500.... 0.01/0.07 83.6 86.0 87.3 74.2 80.5 81.7 
0.02/o. 19 75.3 84.9 84.7 65.8 77.4 78.5 
0.03/0.42 33.3 47.2 47.4 36.5 52.1 54.1 

1,000. . . . 0.01/0.07 96.7 97.3 97.6 94.8 95.4 95.8 
0.02/o. 19 93.5 96.2 96.4 88.4 91.5 92.1 
0.03/0.42 59.2 69.6 70.0 61.7 73.6 76.6 

Nom.-Terminology and setup follow Strimmer and von Haeseler (1996). 
Abbreviations are explained in Table 1. 

a Jukes-Cantor (T = ?4). 
b Kimura (T = 4). 

B already accounts for the seven possible unrooted trees 
of a quartet of taxa which cannot be substantially im- 
proved by considering a continous spectrum of weights. 

The QP algorithm using discrete weights (B) has 
been incorporated in version 2.5 of the PUZZLE pro- 
gram (Strimmer and von Haeseler 1996). There, it re- 
places algorithm A, which was used in versions 2.4 and 
earlier. PUZZLE can be retrieved over the Internet from 
the server of the European Bioinformatics Institute (ftp: 
//ftp.ebi.ac.uk/pub/software). 
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